This work presents results of a comparative efficiency for global optimization methods based on ideas of reducing the dimensionality of the multiextremal optimization problems. Two approaches to the dimensionality reduction are considered. One of them applies Peano-type space filling curves for reducing the multidimensional problem to an equivalent univariate one. The second approach is based on the nested optimization scheme that transforms the multidimensional problem to a family of one-dimensional subproblems connected recursively. In the frameworks of both approaches, the so-called characteristical algorithms are used for executing the univariate optimization. The efficiency of the compared global search methods is evaluated experimentally on the well-known GKLS test class generator being at present a classical tool for testing global optimization algorithms. Results for problems of different dimensions demonstrate a convincing advantage of the adaptive nested optimization scheme used in combination with the information-statistical univariate algorithm over its rivals.

1.
R.
Horst
and
P. M.
Pardalos
,
Handbook of Global Optimization
(
Kluwer Academic Publishers
,
Dordrecht
,
1995
).
2.
A.
Törn
and
A.
Zilinskas
,
Global Optimization. Lecture Notes in Computer Science 350
(
Springer–Verlag
,
Berlin
,
1989
).
3.
A. A.
Zhigljavsky
,
Theory of Global Random Search
(
Kluwer Academic Publishers
,
Dordrecht
,
1991
).
4.
R. G.
Strongin
and
Y. D.
Sergeyev
,
Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms
(
Kluwer Academic Publishers
,
Dordrecht
,
2000
).
5.
R. G.
Strongin
,
Numerical Methods in Multiextremal Problems (Information-Statistical Algorithms)
(
Nauka
,
Moscow
,
1978
) in Russian.
6.
A. R.
Butz
,
Inform. Control
12
,
314
330
(
1968
).
7.
A. E.
Hime
,
H. A.
Oliveira
, and
J. A.
Petraglia
,
Soft Computing in Industrial Applications
96
,
121
130
(
2011
).
8.
Y. D.
Sergeyev
,
R. G.
Strongin
, and
D.
Lera
,
Introduction to global optimization exploiting space-filling curves
(
Springer
,
Berlin
,
2013
).
9.
V. P.
Gergel
,
M. I.
Kuzmin
,
N. A.
Solovyov
, and
V. A.
Grishagin
,
International Review of Automatic Control
8
,
51
55
(
2015
).
10.
C. R.
Carr
and
C. W.
Howe
,
Quantitative Decision Procedures in Management and Economic: Deterministic Theory and Applications
(
McGraw–Hill
,
New York
,
1964
).
11.
V. A.
Grishagin
and
R. G.
Strongin
,
Engineering Cybernetics
22
,
117
122
(
1984
).
12.
Y. D.
Sergeyev
and
V. A.
Grishagin
,
Optimization Methods and Software
3
,
111
124
(
1994
).
13.
V. P.
Gergel
and
R. G.
Strongin
,
Future Generation Computer Systems
21
,
673
678
(
2005
).
14.
E. R.
Dam
,
B.
Husslage
, and
D.
Hertog
,
Journal of Global Optimization
46
,
287
306
(
2010
).
15.
K.
Barkalov
and
V.
Gergel
, “
Multilevel scheme of dimensionality reduction for parallel global search algorithms
,” in
OPT-i 2014, An International Conference on Engineering and Applied Sciences Optimization
(
Kos Island, Greece
,
2014
), pp.
2111
2124
.
16.
V. A.
Grishagin
,
Y. D.
Sergeyev
, and
R. G.
Strongin
,
Journal of Global Optimization
10
,
185
206
(
1997
).
17.
Y. D.
Sergeyev
and
V. A.
Grishagin
,
Journal of Optimization Theory and Applications
80
,
513
536
(
1994
).
18.
S. A.
Piyavskij
,
USSR Comput. Math. Math. Phys.
12
,
57
67
(
1972
).
19.
A.
Zilinskas
,
J. Royal Statistical SocietyC
23
,
367
375
(
1978
).
20.
D.
Lera
and
Y. D.
Sergeyev
,
SIAM Journal on Optimization
23
,
508
529
(
2013
).
21.
Y. D.
Sergeyev
and
V. A.
Grishagin
,
Journal of Computational Analysis & Applications
3
,
123
145
(
2001
).
22.
V.
Gergel
,
V.
Grishagin
, and
R.
Israfilov
,
Procedia Computer Science
51
,
865
874
(
2015
).
23.
V.
Gergel
,
V.
Grishagin
, and
A.
Gergel
,
Journal of Global Optimization
66
,
35
51
(
2016
).
24.
M.
Gaviano
,
D. E.
Kvasov
,
D.
Lera
, and
Y. D.
Sergeyev
,
ACM Transactions on Mathematical Software
29
,
469
480
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.