The problem of finding the global minimum of a real function on a set SRN occurs in many real world problems. In this paper, the global optimization problem with a multiextremal objective function satisfying the Lipschitz condition over a hypercube is considered. We propose a local tuning technique that adaptively estimates the local Lipschitz constants over different zones of the search region and a technique, called the local improvement, in order to accelerate the search. Peano-type space-filling curves for reduction of the dimension of the problem are used. Convergence condition are given. Numerical experiments executed on several hundreds of test functions show quite a promising performance of the introduced acceleration techniques.

1.
Yu.G.
Evtushenko
,
Comput. Math. Math. Phys.
11
,
1390
1403
, (
1971
).
2.
R.
Horst
and
P.M.
Pardalos
,
Handbook of Global Optimization
(
Kluwer
,
Dordrecht
,
1995
).
3.
D.R.
Jones
,
C.D.
Perttunen
,
B.E.
Stuckman
,
J. Optim. Theory Appl.
79
,
157
181
, (
1993
).
4.
R.
Paulavic̆ius
and
J.
Žilinskas
,
Simplicial Global Optimization
(
Springer
,
New York
,
2014
).
5.
Ya.D
Sergeyev
and
D.E.
Kvasov
,
SIAM J. Optim.
16
,
910
937
, (
2006
).
6.
Ya.D
Sergeyev
and
D.E.
Kvasov
,
Diagonal global optimization methods
(
Fizmatlit
,
Moscov
,
2008
).
7.
R.G.
Strongin
and
Ya.D.
Sergeyev
,
Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms
(
Kluwer
,
Dordrecht
2000
).
8.
R.G.
Strongin
and
Ya.D.
Sergeyev
,
J. Global Optim.
27
(
1
),
25
50
(
2003
).
9.
A.A.
Zhigljavsky
and
A.
Žilinskas
,
Stochastic Global Optimization
(
Springer
,
New York
,
2008
).
10.
D.
Famularo
,
P.
Pugliese
,
Ya.D.
Sergeyev
,
Automatica
35
,
1605
1611
(
1999
).
11.
D.E.
Kvasov
and
Ya.D.
Sergeyev
,
Autom. Remote Control
,
74
(
9
),
1435
1448
(
2013
).
12.
D.E.
Kvasov
,
Ya.D.
Sergeyev
,
M.S.
Mukhametzhanov
,
AIP Conference Proceedings
1738
,
400004
(
2016
).
13.
Ya.D.
Sergeyev
and
V.A.
Grishagin
,
Optim. Methods Softw.
3
,
111
124
(
1994
).
14.
R.
Paulavic̆ius
,
Ya.D.
Sergeyev
,
D.E.
Kvasov
,
J.
Žilinskas
,
J. Global Optim.
59
(
2-3
),
545
567
, (
2014
).
15.
K.
Barkalov
,
A.
Polovinkin
,
I.
Meyerov
,
S.
Sidorov
,
N.
Zolotykh
,
LNCS
7979
,
154
166
(
2013
).
16.
K.
Barkalov
,
V.
Ryabov
,
S.
Sidorov
,
LNCS
6083
,
232
240
(
2010
).
17.
V.A.
Grishagin
and
R.G.
Strongin
,
Eng. Cybern.
22
(
5
),
117
22
(
1984
).
18.
V.A.
Grishagin
,
Ya.D.
Sergeyev
,
R.G.
Strongin
,
J. Global Optim.
10
,
185
206
(
1997
).
19.
K.
Barkalov
,
V.
Gergel
,
I.
Lebedev
,
LNCS
9251
,
307
318
(
2015
)
20.
V.P.
Gergel
,
M.I.
Kuzmin
,
N.A.
Solovyov
,
V.A.
Grishagin
,
Int. Rev. Autom. Control
8
(
1
),
51
55
(
2015
).
21.
D.
Lera
and
Ya.D.
Sergeyev
,
SIAM J. Optim.
23
(
1
),
508
529
, (
2013
).
22.
Ya.D.
Sergeyev
,
R.G.
Strongin
,
D.
Lera
,
Introduction to Global Optimization Exploiting Space-Filling Curves
(
Springer
,
New York
,
2013
).
23.
D.
Lera
and
Ya.D.
Sergeyev
,
Commun. Nonlinear Sci. Numer. Simul.
23
,
328
342
, (
2015
).
24.
D.
Lera
and
Ya.D.
Sergeyev
,
AIP Conference Proceedings
1738
,
400008
(
2016
).
25.
S.A.
Pijavskii
,
Comput. Math. Math. Phys.
12
,
57
67
(
1972
).
26.
Ya.D.
Sergeyev
,
SIAM J. Optim.
5
(
4
),
858
870
, (
1995
).
27.
D.
Lera
and
Ya.D.
Sergeyev
,
Appl. Numer. Math.
60
(
1-2
),
115
129
, (
2010
).
28.
Ya.D.
Sergeyev
,
Comput. Maths. Math. Phys.
35
(
5
),
705
717
, (
1995
).
29.
D.
Lera
and
Ya.D.
Sergeyev
,
BIT
42
(
1
),
119
133
, (
2002
).
30.
D.
Lera
and
Ya.D.
Sergeyev
,
J. Global Optim.
48
(
1
),
99
112
, (
2010
).
31.
J.
Pintér
, “Global optimization: software, test problems, and applications” in
Handbook of Global Optimization
, ed. by
P.M.
Pardalos
and
H.E.
Romeijn
(
Kluwer
,
Dordrecht
2002
), pp.
515
569
.
32.
M.
Gaviano
,
D.E.
Kvasov
,
D.
Lera
,
Ya.D.
Sergeyev
,
ACM Trans. Math. Software
,
29
(
4
),
469
480
, (
2003
).
33.
M.J.
Gablonsky
and
C.T.
Kelley
,
J. Global Optim.
21
,
27
37
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.