This work considers a parallel algorithm for solving the multidimensional multiextremal optimization problems. The algorithm combines nested optimization scheme and Peano-type space filling curves for the dimensionality reduction. To decrease the number of iterations of the global algorithm, we use one of local tuning techniques based on the adaptive estimation of the global optimizer. Parallel algorithm with mixed local-global strategy of search is proposed as well. The efficiency of the parallel algorithm was investigated using a supercomputer. The speedup of the algorithm using several cores as compared with the serial algorithm has been demonstrated experimentally.
REFERENCES
1.
D.
Famularo
, P.
Pugliese
, and Y. D.
Sergeyev
, Automatica
35
, 1605
–1611
(1999
).2.
K.
Barkalov
, A.
Polovinkin
, I.
Meyerov
, S.
Sidorov
, and N.
Zolotykh
, Lecture Notes in Computer Science
7979
, 154
–166
(2013
).3.
V. P.
Gergel
, M. I.
Kuzmin
, N. A.
Solovyov
, and V. A.
Grishagin
, International Review of Automatic Control
8
(1
), 51
–55
(2015
).4.
D. E.
Kvasov
and Y. D.
Sergeyev
, Advances in Engineering Software
80
, 58
–66
(2015
).5.
R. G.
Strongin
and Y. D.
Sergeyev
, Global optimization with non-convex constraints. Sequential and parallel algorithms
(Kluwer Academic Publishers
, Dordrecht
, 2000
).6.
Y. D.
Sergeyev
, R. G.
Strongin
, and D.
Lera
, Introduction to global optimization exploiting space-filling curves
(Springer
, 2013
).7.
Y. D.
Sergeyev
and V. A.
Grishagin
, Optimization Methods and Software
3
, 111
–124
(1994
).8.
V. A.
Grishagin
, Y. D.
Sergeyev
, and R. G.
Strongin
, Journal of Global Optimization
10
, 185
–206
(1997
).9.
V. P.
Gergel
and R. G.
Strongin
, Lecture Notes in Computer Science
2763
, 76
–88
(2003
).10.
V. P.
Gergel
and R. G.
Strongin
, Future Generation Computer Systems
21
(5
), 673
–678
(2005
).11.
K.
Barkalov
, V.
Ryabov
, and S.
Sidorov
, Lecture Notes in Computer Science
6083
, 232
–240
(2010
).12.
K.
Barkalov
, V.
Gergel
, and I.
Lebedev
, Lecture Notes in Computer Science
9251
, 307
–318
(2015
).13.
K.
Barkalov
and V.
Gergel
, “Multilevel scheme of dimensionality reduction for parallel global search algorithms
,” in An International Conference on Engineering and Applied Sciences Optimization, OPT-i
(Kos Island, Greece
, 4-6 June 2014
), pp. 2111
–2124
.14.
V.
Gergel
, V.
Grishagin
, and R.
Israfilov
, Procedia Computer Science
51
, 865
–874
(2015
).15.
Y. D.
Sergeyev
and D. E.
Kvasov
, Communications in Nonlinear Science and Numerical Simulation
21
(1-3
), 99
–111
(2015
).16.
D. E.
Kvasov
, 4OR – A Quarterly Journal of Operations Research
6
(4
), 403
–406
(2008
).17.
R.
Paulavicius
, Y. D.
Sergeyev
, D. E.
Kvasov
, and J.
Zilinskas
, Journal of Global Optimization
59
(2-3
), 545
–567
(2014
).18.
A.
Zilinskas
, Journal of the Royal Statistical Society. Series C (Applied Statistics)
27
(3
), 367
–375
(1978
).19.
J.
Calvin
and A.
Zilinskas
, Journal of Optimization Theory and Applications
106
(2
), 297
–307
(2000
).20.
V. P.
Gergel
, Computational Mathematics and Mathematical Physics
36
(6
), 729
–742
(1996
).21.
Y. D.
Sergeyev
, D.
Famularo
, and P.
Pugliese
, Journal of Global Optimization
21
(3
), 317
–341
(2001
).22.
K. A.
Barkalov
and R. G.
Strongin
, Computational Mathematics and Mathematical Physics
42
(9
), 1289
–1300
(2002
).23.
D. L.
Markin
and R. G.
Strongin
, Computational Mathematics and Mathematical Physics
27
(1
), 33
–39
(1987
).24.
M.
Gaviano
, D. E.
Kvasov
, D.
Lera
, and Y. D.
Sergeev
, ACM Transactions on Mathematical Software
29
(4
), 469
–480
(2003
).
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.