While comparing results on benchmark functions is a widely used practice to demonstrate the competitiveness of global optimization algorithms, fixed benchmarks can lead to a negative data mining process. To avoid this negative effect, the GENOPT contest benchmarks can be used which are based on randomized function generators, designed for scientific experiments, with fixed statistical characteristics but individual variation of the generated instances. The generators are available to participants for off-line tests and online tuning schemes, but the final competition is based on random seeds communicated in the last phase through a cooperative process. A brief presentation and discussion of the methods and results obtained in the framework of the GENOPT contest are given in this contribution.

1.
M. R.
Garey
and
D. S.
Johnson
,
Computers and Intractability – A guide to the Theory of NP-Completeness
(
W.H. Freeman and Co.
,
San Francisco
,
1979
).
2.
P. M.
Pardalos
, ed.,
Complexity in Numerical Optimization
(
World Scientific
,
River Edge, N.J.
,
1993
).
3.
P. M.
Pardalos
and
H. E.
Romeijn
, eds.,
Handbook of Global Optimization
, Vol.
2
(
Kluwer Academic Publishers
,
Dordrecht
,
2002
).
4.
D. E.
Kvasov
and
Y. D.
Sergeyev
,
Advances in Engineering Software
80
,
58
66
(
2015
).
5.
J. W.
Gillard
and
D. E.
Kvasov
,
Stat. Interface
10
,
59
70
(
2017
).
6.
A. A.
Zhigljavsky
and
A.
Žilinskas
,
Stochastic Global Optimization
(
Springer
,
New York
,
2008
).
7.
G.
Dzemyda
,
V.
Šaltenis
, and
A.
Žilinskas
, eds.,
Stochastic and Global Optimization
(
Kluwer Academic Publishers
,
Dordrecht
,
2002
).
8.
C. C.
McGeoch
,
INFORMS Journal on Computing
8
,
1
28
(
1996
).
9.
C. A.
Floudas
,
P. M.
Pardalos
,
C. S.
Adjiman
,
W.
Esposito
,
Z.
Gümüs
,
S.
Harding
,
J.
Klepeis
,
C.
Meyer
, and
C.
Schweiger
,
Handbook of Test Problems in Local and Global Optimization
(
Kluwer Academic Publishers
,
Dordrecht
,
1999
).
10.
R.
Horst
and
P. M.
Pardalos
, eds.,
Handbook of Global Optimization
, Vol.
1
(
Kluwer Academic Publishers
,
Dordrecht
,
1995
).
11.
A.
Neumaier
,
O.
Shcherbina
,
W.
Huyer
, and
T.
Vinkó
,
Math. Program.
103
,
335
356
(
2005
).
12.
J. D.
Pintér
,
Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications)
(
Kluwer Academic Publishers
,
Dordrecht
,
1996
).
13.
J. D.
Pintér
and
F. J.
Kampas
,
TOP
21
,
133
162
(
2013
).
14.
L. M.
Rios
and
N. V.
Sahinidis
,
J. Global Optim.
56
,
1247
1293
(
2013
).
15.
K.
Schittkowski
,
More Test Examples for Nonlinear Programming Codes
, Lecture Notes in Economics and Mathematical Systems, Vol.
282
(
Springer–Verlag
,
Berlin
,
1987
).
16.
R. G.
Strongin
and
Y. D.
Sergeyev
,
Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms
(
Kluwer Academic Publishers
,
Dordrecht
,
2000
).
17.
D. H.
Wolpert
and
W. G.
Macready
,
IEEE Transactions on Evolutionary Computation
1
,
67
82
(
1997
).
18.
R.
Battiti
, in
Modern Heuristic Search Methods
, edited by
V. J.
Rayward-Smith
,
I. H.
Osman
,
C. R.
Reeves
, and
G. D.
Smith
(
John Wiley and Sons Ltd
,
1996
) Chap. 4,, pp.
61
83
.
19.
J. N.
Hooker
,
Journal of Heuristics
1
,
33
42
(
1995
).
20.
R. S.
Barr
,
B. L.
Golden
,
J. P.
Kelly
,
M. G. C.
Resende
, and
W.
Stewart
,
Journal of Heuristics
1
,
9
32
(
1995
).
21.
Y. D.
Sergeyev
and
D. E.
Kvasov
,
SIAM J. Optim.
16
,
910
937
(
2006
).
22.
V. A.
Grishagin
, in
Problems of Stochastic Search
, Vol.
7
(
Zinatne, Riga
,
1978
), pp.
198
206
, in Russian.
23.
E. D.
Dolan
and
J. J.
Moré
,
Math. Program.
91
,
201
213
(
2002
).
24.
Y. D.
Sergeyev
,
D. E.
Kvasov
, and
M. S.
Mukhametzhanov
,
Math. Comput. Simul.
(
2016
), in Press, doi:.
25.
R.
Battiti
and
G.
Tecchiolli
,
Annals of Operations Research – Metaheuristics in Combinatorial Optimization
63
,
153
188
(
1996
).
26.
M.
Gaviano
,
D. E.
Kvasov
,
D.
Lera
, and
Y. D.
Sergeyev
,
ACM Trans. Math. Software
29
,
469
480
(
2003
).
27.
J.
Carpenter
,
Science
331
,
698
699
(
2011
).
28.
E.
Segredo
,
E.
Lalla-Ruiz
,
E.
Hart
,
B.
Paechter
, and
S.
Voss
, “
Hybridisation of evolutionary algorithms through hyper-heuristics for global continuous optimisation
,” in
Proc. Learning and Intelligent Optimization Conference, LION 10
,
Ischia, Italy
,
May 2016
, LNCS, edited by
P.
Festa
,
M.
Sellmann
, and
J.
Vanschoren
(
Springer Verlag
,
2016
) in Press.
29.
K.
Barkalov
,
A.
Sysoyev
,
I.
Lebedev
, and
V.
Sovrasov
, “
Solving genopt problems with the use of examin solver
,” in
Proc. Learning and Intelligent Optimization Conference, LION 10
,
Ischia, Italy
,
May 2016
, LNCS, edited by
P.
Festa
,
M.
Sellmann
, and
J.
Vanschoren
(
Springer Verlag
,
2016
) in Press.
This content is only available via PDF.
You do not currently have access to this content.