Analysis of oscillation processes in a blocky medium is fulfilled using models, wherein elastic blocks interact via inter-layers with different mechanical properties. To describe wave processes, three different models are applied. First model considers elastic interaction between blocks; second one is the viscoelastic Pointing-Thomson model, that combines both Maxwell and Kelvin-Voigt models, and third one, named as the model with a rigid contact, excludes a possibility of blocks interpenetration. The dissipationless Ivanov scheme is applied in interlayers, while in blocks the Godunov gap decay scheme is used. It is shown that additional enclosing equations, which guarantee absence of energy dissipation in the Ivanov scheme, provide thermodynamic consistency of the model, meaning that the difference analogue of the energy conservation law for blocky structures is performed. Using the MPI technology, a parallel software is designed for simulation of the elastic waves propagation in a two-dimensional blocky medium.

1.
J.
Azevedo
,
G.
Sincraian
, and
J. V.
Lemos
(
2000
)
Earthq. Spectra
16
(
2
),
337
365
.
2.
J. V.
Lemos
(
2007
)
Int. J. Archit. Herit.
1
(
2
),
190
213
.
3.
A.
Cecchi
and
K.
Sab
(
2002
)
Eur. J. Mech. A-Solid
21
(
5
),
715
746
.
4.
A. E.
Shabrawy
,
T.
Verdel
, and
J. P.
Piguet
, “
The distinct element method: a new way to study the behaviour of ancient masonry structures under static or dynamic loading by the use of numerical modeling
,” in
Cairo Earthquake Engineering Symposium Proc.
(
Caire, Egypt
,
1994
), pp.
169
178
.
5.
N. I.
Aleksandrova
and
E. N.
Sher
, (
2004
)
J. Min. Sci.
40
(
6
),
579
587
.
6.
N. I.
Alexandrova
,
A. G.
Chernikov
, and
E. N.
Sher
(
2006
)
J. Min. Sci.
42
(
5
),
468
475
.
7.
L. A.
Molotkov
(
1997
)
J. Math. Sci.
86
(
3
),
2721
2734
.
8.
K. T.
Nihei
,
Micromechanics of Seismic Wave Propagation in Granular Rocks
(
Berkeley
,
University of California
,
1992
).
9.
J. B.
Walsh
(
1965
)
J. Geophys. Res.
70
(
2
),
381
389
.
10.
A. E.
Balek
(
2005
)
Min. Inform. Analyt. Bul.
6
,
163
170
. [in Russian]
11.
V. A.
Saraikin
(
2008
)
J. Min. Sci.
44
(
4
),
353
362
.
12.
L. A.
Ostrovsky
(
1991
)
J. Acoust. Soc. Am.
90
(
6
),
3332
3337
.
13.
L. A.
Molotkov
and
A. E.
Khilo
(
1986
)
J. Math. Sci.
32
(
2
),
173
185
.
14.
V. A.
Saraikin
,
A. G.
Chernikov
, and
E. N.
Sher
(
2015
)
J. Appl. Mech. Tech. Phys.
56
(
4
),
688
697
.
15.
D. P.
Adhikary
,
H.-B.
Muhlhaus
, and
A. V.
Dyskin
(
2001
)
Int. J. Numer. Anal. Met.
25
(
9
),
871
884
.
16.
G. W.
Postma
(
1955
)
Geophysics
20
(
4
),
780
806
.
17.
O. V.
Sadovskaya
and
V. M.
Sadovskii
(
2010
)
Acoust. Phys.
56
(
6
),
942
950
.
18.
V. M.
Sadovskii
and
O. V.
Sadovskaya
(
2015
)
Wave Motion
52
,
138
150
.
19.
M. P.
Varygina
,
M. A.
Pokhabova
,
O. V.
Sadovskaya
, and
V. M.
Sadovskii
(
2011
)
Numer. Meth. Progr.
12
(
4
),
435
442
.
20.
I. A.
Garagash
(
2002
)
Phys. Mesomech.
5
(
5–6
),
45
51
.
21.
S. K.
Godunov
and
E. I.
Romenskii
,
Elements of Continuum Mechanics and Conservation Laws
(
Kluver
,
New York
,
2003
).
22.
G. V.
Ivanov
,
Yu. M.
Volchkov
,
I. O.
Bogulskii
,
S. A.
Anisimov
, and
V. D.
Kurguzov
,
Numerical Solution of Dynamical Problems of Viscoelastic Deformation of Solids
(
Sib. Univ. Izdat.
,
Novosibirsk
,
2002
). [in Russian]
23.
M.
Reiner
,
Rheology
(
Springer-Verlag
,
Berlin-Göttingen-Heidelberg
,
1958
).
24.
O.
Sadovskaya
and
V.
Sadovskii
,
Mathematical Modeling in Mechanics of Granular Materials
, Advanced Structured Materials, Vol.
21
(
Springer
,
Heidelberg-New York-Dordrecht-London
,
2012
).
This content is only available via PDF.
You do not currently have access to this content.