The two-dimensional Newtonian and non-Newtonian (Carreau viscosity model used) oscillatory flows in straight tubes are studied theoretically and numerically. The corresponding analytical solution of the Newtonian flow and the numerical solution of the Carreau viscosity model flow show differences in velocity and shear rate. Some estimates for the velocity and shear rate differences are theoretically proved. As numerical examples the blood flow in different type of arteries and the polymer flow in pipes are considered.

1.
A.
Razavi
,
E.
Shirani
, and
M.R.
Sadeghi
(
2011
)
Journal of Biomechanics
44
,
2021
2030
.
2.
T. G.
Myers
(
2005
)
Physical Review E
72
, paper 066302,
11
p.
3.
S. S.
Shibeshi
and
W. E.
Collins
(
2005
)
Appl Rheol.
15
,
398
405
.
4.
B.
Liu
and
D.
Tang
(
2011
)
Mol. Cell Biomech.
8
,
73
90
.
5.
A.
Valencia
,
D.
Ledermann
,
E.
Bravo
, and
M.
Galvez
(
2008
)
Numerical Methods in Fluids
58
,
1081
1100
.
6.
S.
Tabakova
,
E.
Nikolova
, and
S.
Radev
, “
Carreau Model for Oscillatory Blood Flow in a Tube
,” in
AMi-TaNS’14
,
AIP Conference Proceedings
, Vol.
1629
, edited by
M.D.
Todorov
, (
American Institute of Physics
,
Melville, NY
,
2014
), pp.
336
343
.
7.
N.
Kutev
,
S.
Tabakova
, and
S.
Radev
, “
Approximation of the oscillatory blood flow using the Carreau viscosity model
,” in
Proceedings of the International Conference on Mechanics – Seventh Polyakhov’s Reading
,
2-6 February 2015
,
Saint-Petersburg, Russia
, ISBN , IEEE Catalog Number CFP15A24-ART,
4
p.
8.
S.
Tabakova
,
N.
Kutev
, and
S.
Radev
, “
Application of the Carreau viscosity model to the oscillatory fFlow in blood vessels
,” in
AMEE’15
,
AIP Conference Proceedings
, Vol.
1690
, edited by
V.
Pasheva
, et al.
, (
American Institute of Physics
,
Melville, NY
,
2015
), paper 040019,
7
p.
9.
J.
Boyd
,
J.M.
Buick
, and
S.
Green
(
2007
)
Physics of Fluids
19
, paper 093103,
14p
.
10.
L.N.
Brush
and
S.M.
Roper
(
2008
)
J. Fluid Mech.
616
,
235
262
.
11.
J. R.
Womersley
(
1955
)
The Journal of Physiology
127
,
553
563
.
12.
M.H.
Protter
and
H. F.
Weinberger
,
Maximum Principles in Differential Equations
(
Springer-Verlag
,
New York
,
1984
), p.
261
.
This content is only available via PDF.
You do not currently have access to this content.