Sn-Al co-doped polycrystalline ZnO ceramics were prepared by sintering in air. Phase and microstructure analysis was performed by X-ray diffraction and SEM-EDS and thermoelectric properties were measured. XRD analysis showed a ZnO primary phase as well as secondary phase peaks due to the formation of a Zn2SnO4 spinel phase or SnO2(ZnO:Sn-Al)m intergrowth phase. SEM analysis revealed a dense microstructure with a small number of nanometric pores, consistent with the measured density of 5.48 g/cm3. An activated electrical conductivity characteristic of a semiconducting material was observed as well as a negative Seebeck coefficient with both values increasing in absolute value from RT to 730 °C. The power factor had a maximum value of 3.73×10−4 W m−1 K−2 at 730 °C. Thermal conductivity measurements showed a significant reduction over the measured temperature range compared to undoped ZnO. This could be attributed to grain size reduction, the formation of a nanoscale secondary phase or a reduction in crystallinity caused by Sn-Al co-doping. A maximum ZT of 0.06 was obtained at 750 °C for the Sn-Al co-doped ZnO ceramics.

1.
Thermoelectric Nanomaterials: Materials Design and Applications
, edited by
K.
Koumoto
and
T.
Mori
(
Springer Series in Materials Science, Springer
,
Heidelberg
,
2013
).
2.
M.
Rull-Bravo
,
A.
Moure
,
J. F.
Fernandez
and
M.
Martin-Gonzalez
,
RSC Adv.
5
,
41653
41667
(
2015
) and references therein.
3.
K.
Fujita
,
T.
Mochida
and
K.
Nakamura
,
Jpn. J. Appl. Phys.
40
,
4644
4647
(
2001
).
4.
S.
Ohta
,
H.
Ohta
and
K.
Koumoto
,
J. Ceram. Soc. Jpn.
114
,
102
105
(
2006
).
5.
P.
Jood
,
R.
Mehta
,
Y.
Zhang
,
G.
Peleckis
,
X.
Wang
,
R.
Siegel
,
T.
Borca-Tasciuc
,
S. X.
Dou
and
G.
Ramanath
,
Nano Lett.
11
,
4337
4342
(
2011
).
6.
K.P.
Ong
,
D.J.
Singh
and
P.
Wu
,
Phys. Rev. B
83
,
115110
(
2011
).
7.
T.
Tsubota
,
M.
Ohtaki
,
K.
Eguchi
and
H.
Arai
,
J. Mater. Chem.
7
,
85
90
(
1997
).
8.
M.
Ohtaki
,
K.
Araki
and
K.
Yamamoto
,
J. Elect. Mater.
38
,
1234
1238
(
2009
).
9.
K.
Park
,
J.K.
Seong
,
Y.
Kwon
,
S.
Nahm
and
W.S.
Cho
,
Mater. Res. Bull.
43
,
54
61
(
2008
).
10.
A.
Seko
,
F.
Oba
,
A.
Kuwabara
and
I.
Tanaka
,
Phys. Rev. B
72
,
024107
(
2005
).
11.
H.
Morkoc
and
Ü.
Özgur
,
Zinc Oxide: Fundamentals, Materials and Device Technology
(
Wiley VCH Verlag GmbH & Co. KGaA
,
Weinheim
,
2009
), p.
13
.
12.
M.A.
Alpuche-Aviles
and
Y.
Wu
,
J. Am. Chem. Soc.
131
,
3216
3224
(
2009
).
13.
D.
Bèrardan
,
C.
Byl
and
N.
Dragoe
,
J. Am. Ceram. Soc.
93
,
2352
2358
(
2010
).
14.
B.
Cao
,
T.
Shi
,
S.
Zheng
,
Y.H.
Ikuhara
,
W.
Zhou
,
D.
Wood
,
M.
Al-Jassim
and
Y.
Yan
,
J. Phys. Chem. C.
116
,
5009
5013
(
2012
).
15.
E.
López-Ponce
,
J. L.
Costa-Krämer
,
M. S.
Martín-González
,
F.
Briones
,
J. F.
Fernández
,
A. C.
Caballero
,
M.
Villegas
and
J.
de Frutos
,
Phys. Stat. Sol.
203
,
1383
1389
(
2006
).
16.
M.R.
Vaezi
and
S.K.
Sadrnezhaad
,
Mater. Sci. Eng. B
141
,
23
27
(
2007
).
17.
A.
Slassi
,
N.
Lakouari
,
Y.
Ziat
,
Z.
Zarhri
,
A.
Fakhim Lamrani
,
E.K.
Hlil
and
A.
Benyoussef
,
Sol. State Comm.
218
,
45
48
(
2015
).
18.
J.
Han
,
P.Q.
Mantas
and
A.M.R.
Senos
,
J. Mater. Res.
16
,
459
468
(
2001
).
19.
R.D.
Shannon
,
Acta Cryst. A
32
,
751
767
(
1976
).
20.
J.
Han
,
P.Q.
Mantas
and
A.M.R.
Senos
,
J. Eur. Ceram. Soc.
22
,
49
59
(
2002
).
21.
J.P.
Heremans
,
V.
Jovovic
,
E.S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
and
G.J.
Snyder
,
Science
321
,
554
557
(
2008
).
22.
J.P.
Heremans
,
B.
Wiendlocha
and
A.M.
Chamoire
,
Energy Environ. Sci.
5
,
5510
5530
(
2012
).
23.
C.M.
Jaworski
,
V.
Kulbachinskii
and
J.P.
Heremans
,
Phys. Rev. B
,
80
,
233201
(
2009
).
24.
T.
Tsubota
,
M.
Ohtaki
,
K.
Eguchi
and
H.
Arai
,
J. Mater. Chem.
8
,
409
412
(
1998
).
25.
K.
Shirouzu
,
T.
Ohkusa
,
M.
Hotta
,
N.
Enomoto
and
J.
Hojo
,
J. Ceram. Soc. Jpn.
115
,
254
258
(
2007
).
26.
S.I.
Nunes
and
R.C.
Bradt
,
J. Am. Ceram. Soc.
78
,
2469
2475
(
1995
).
27.
N.
Daneu
,
A.
Rečnik
,
S.
Bernik
and
D.
Kolar
,
J. Am. Ceram. Soc.
83
,
3165
3171
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.