To perform a comparative analysis of osseointegration of bioceramic alumina-based granules, hydroxyapatite-based granules, and deproteinized bone granules. The experiment was conducted on 52 adult male Kyoto-Wistar rats weighing 350 to 520 g. The animals were divided into five matched groups that differed only in the type of an implanted material. The granules were implanted in the lumbar vertebral bodies and in the distal right femur of each laboratory animal. Two months after surgery, the animals were euthanized, followed by tissue sampling for morphological studies. An examination of specimens from the groups with implanted alumina granules revealed the newly formed trabecular bone with remodeling signs. The bone tissue filled the intragranular space, tightly adhering to the granule surface. There was no connective tissue capsule on the border between bone tissue and alumina granules. Cylindrical bioceramic alumina-based granules with an open internal channel have a higher strength surpassing than that of analogs and the osseointegration ability close to that of hydroxyapatite and deproteinized bone granules.

1.
I. A.
Kirilova
,
V. T.
Podorozhnaya
,
E. V.
Legostaeva
,
Yu. P.
Sharkeev
,
P. V.
Uvarkin
, and
A. M.
Aronov
,
Osteoplastic biomaterials and their physical and mechanical properties
,
Hir. Pozvonoc.
1
,
81
87
(
2010
).
2.
I. A.
Kirilova
,
M. A.
Sadovoy
, and
V. T.
Podorozhnaja
,
Comparative characteristics of materials for bone grafting: Composition and properties
,
Hir. Pozvonoc.
3
,
72
83
(
2012
).
3.
M.
Singh
,
C.
Berkland
, and
M. S.
Detamore
,
Strategies and applications for incorporating physical and chemical signal gradients in tissue engineering
,
Tissue Eng. B Rev.
14
(
4
),
341
366
(
2008
), doi .
4.
J. R.
McConnell
,
B. J. C.
Freeman
,
U. K.
Debnath
, et al.,
A prospective randomized comparison of coralline hydroxyapatite with autograft in cervical interbody fusion
,
Spine
28
(
4
),
317
323
(
2003
).
5.
J. C.
Le Huec
,
D.
Clement
,
E.
Lesprit
, and
J.
Faber
,
The use of calcium phosphates, their biological properties
,
Eur. J. Orthop. Surg. Traumatol.
10
,
223
229
(
2000
).
6.
D.
Alexander
,
J.
Hoffmann
,
A.
Munz
,
B.
Friedrich
,
J.
Geis-Gerstorfer
, and
S.
Reinert
,
Analysis of OPLA scaffolds for bone engineering constructs using human jaw periosteal cells
,
J. Mater. Sci. Mater. Med.
19
,
965
974
(
2008
).
7.
C. Y.
Tan
,
K. L.
Aw
,
W. H.
Yeo
,
S.
Ramesh
,
M.
Hamdi
, and
I.
Sopyan
,
Influence of magnesium doping
, in
Hydroxyapatite Ceramics
, edited by
N. A. Abu
Osman
,
F.
Ibrahim
,
W. A. B. Wan
Abas
,
H. S. Abd
Rahman
, and
H. N.
Ting
,
Biomed.
21
,
314
317
(
2008
).
8.
D. J.
Zhang
,
L. F.
Zhang
,
Z. C.
Xiong
,
W.
Bai
, and
C. D.
Xiong
,
Preparation and characterization of biodegradable poly (D,Llactide) and surface-modified bioactive glass composites as bone repair materials
,
J. Mater. Sci. Mater. Med.
20
,
1971
1978
(
2009
).
9.
C. C.
Wigfield
and
R. J.
Nelson
,
Nonautologous interbody fusion materials in cervical spine Surgery
,
Spine
26
(
6
),
687
694
(
2001
).
10.
V. V.
Rerikh
,
A. R.
Avetisyan
,
S. V.
Savchenko
,
V. A.
Bataev
,
A. A.
Nikulina
,
A. I.
Popelyukh
,
A. M.
Aronov
, and
E. S.
Semantsova
,
Comparative analysis of osseointegration of bioceramic alumoxane conglomerate of granules
,
Siber. Sci. Med. J.
35
(
6
),
22
28
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.