Mechanical properties of living cancer and normal thyroidal cells were investigated by atomic force microscopy (AFM). Cell mechanics was compared before and after treatment with ML7, which is known to reduce myosin activity and induce softening of cell structures. We recorded force curves with extended dwell time of 6 seconds in contact at maximum forces from 500 pN to 1 nN. Data were analyzed within different frameworks: Hertz fit was applied in order to evaluate differences in Young’s moduli among cell types and conditions, while the fluctuations of the cantilever in contact with cells were analyzed with both conventional algorithms (probability density function and power spectral density) and multifractal detrended fluctuation analysis (MF-DFA). We found that cancer cells were softer than normal cells and ML7 had a substantial softening effect on normal cells, but only a marginal one on cancer cells. Moreover, we observed that all recorded signals for normal and cancer cells were monofractal with small differences between their scaling parameters. Finally, the applicability of wavelet-based methods of data analysis for the discrimination of different cell types is discussed.

1.
M.
Lekka
,
K.
Pogoda
,
J.
Gostek
,
O.
Klymenko
,
S.
Prauzner-Bechcicki
,
J.
Wiltowska-Zuber
,
J.
Jaczewska
,
J.
Lekki
, and
Z.
Stachura
,
Micron
43
,
1259
1266
(
2012
).
2.
J. C.
Benech
,
N.
Benech
,
A. I.
Zambrana
,
I.
Rauschert
,
V.
Bervejillo
,
N.
Oddone
,
A.
Alberro
, and
J. P.
Damián
,
Cardiovascular Regenerative Medicine
2
,
1
8
(
2015
).
3.
J.
Schäpe
,
S.
Prausse
,
R.
Stick
, and
M.
Radmacher
,
Biophys. J.
96
,
4319
4325
(
2009
).
5.
M.
Pachenari
,
S.
Seyedpour
,
M.
Janmaleki
,
S. B.
Shayan
,
S.
Taranejoo
, and
H.
Hosseinkhani
,
J. Biomech.
47
,
373
379
(
2014
).
6.
G.
Binnig
,
C. F.
Quate
, and
C.
Gerber
,
Phys. Rev. Lett.
56
,
930
933
(
1986
).
7.
S. M.
Block
,
Nature
360
,
493
495
(
1992
).
8.
A.
Bausch
,
W.
Möller
, and
E.
Sackmann
,
Biophys. J.
76
,
573
579
(
1999
).
9.
A.
Mietke
,
O.
Otto
,
S.
Girardo
,
P.
Rosendahl
,
A.
Taubenberger
,
S.
Golfier
,
E.
Ulbricht
,
S.
Aland
,
J.
Guck
, and
E.
Fischer-Friedrich
,
Biophys. J.
109
,
2023
2036
(
2015
).
10.
M.
Radmacher
,
IEEE Eng. Med. Biol. Mag.
16
,
47
57
(
1997
).
11.
M.
Radmacher
,
R. W.
Tillman
, and
H. E.
Gaub
,
Biophys. J.
64
,
735
742
(
1993
).
12.
S.
Moreno-Flores
,
R.
Benitez
, and
J. L.
Toca-Herrera
, arXiv preprint arXiv:0904.2704 (
2009
).
13.
A.
Martin-Molina
,
S.
Moreno-Flores
,
E.
Perez
,
D.
Pum
,
U. B.
Sleytr
, and
J. L.
Toca-Herrera
,
Biophys. J.
90
,
1821
1829
(
2006
).
14.
L. M.
Rebelo
,
J. S.
de Sousa
,
J. Mendes
Filho
,
J.
Schaepe
,
H.
Doschke
, and
M.
Radmacher
,
Soft Matter
10
,
2141
2149
(
2014
).
15.
C.
Martinez-Torres
,
A.
Arneodo
,
L.
Streppa
,
P.
Argoul
, and
F.
Argoul
,
Appl. Phys. Lett.
108
,
034102
(
2016
).
16.
Z. M.
Goeckeler
and
R. B.
Wysolmerski
,
J. Cell Biol.
130
,
613
627
(
1995
).
17.
J. L.
Hutter
and
J.
Bechhoefer
,
Rev. Sci. Instrum.
64
,
1868
1873
(
1993
).
18.
H.
Hertz
,
J. Reine Angew. Mathematik
92
,
156
171
(
1882
).
19.
M.
Radmacher
, in
Cell Mechanics
, edited by
Y.-l.
Wang
and
D. E.
Discher
(
Academic Press
,
2007
), pp.
347
372
.
20.
J. W.
Kantelhardt
,
S. A.
Zschiegner
,
E.
Koscielny-Bunde
,
S.
Havlin
,
A.
Bunde
, and
H. E.
Stanley
,
Physica A
316
,
87
114
(
2002
).
21.
D.
Gulich
and
L.
Zunino
,
Physica A
397
,
17
30
(
2014
).
22.
M.
Prabhune
,
G.
Belge
,
A.
Dotzauer
,
J.
Bullerdiek
, and
M.
Radmacher
,
Micron
43
(
12
),
1267
1272
(
2012
).
23.
A.
Schäfer
and
M.
Radmacher
,
Acta Biomater.
1
,
273
280
(
2005
).
24.
K.
Zeman
,
H.
Engelhard
, and
E.
Sackmann
,
Eur. Biophys. J.
18
,
203
219
(
1990
).
25.
W. W.
Ahmed
,
É.
Fodor
, and
T.
Betz
,
BBA-Mol. Cell Res.
28
,
3083
3094
(
2015
).
26.
A.
Yango
,
J.
Schäpe
,
C.
Rianna
,
H.
Doschke
, and
M.
Radmacher
, submitted (
2016
).
27.
C.
Rianna
and
M.
Radmacher
, submitted (
2016
).
This content is only available via PDF.
You do not currently have access to this content.