A metabolic change is one of the tumour hallmarks, which has recently attracted a great amount of attention. One of the main metabolic characteristics of tumour cells is a high level of glycolysis even in the presence of oxygen, known as aerobic glycolysis or the Warburg effect. The energy production is much less in a glycolysis pathway than that in a tricarboxylic acid cycle. The Warburg effect constitutes a fundamental adaptation of tumour cells to a relatively hostile environment, and supports the evolution of aggressive and metastatic phenotypes. As a result, tumour glycolysis may become an attractive target for cancer therapy. Here, we research the effect of potential anticancer agents on tumour cells in vitro. In our study, we found a high sensitivity of tumour cells to anti-glycolityc drugs. In addition, tumour cells are more resistant to the agents studied in comparison with normal cells. We also observed an atypical cooperative interaction of tumour cells in the median lethal dose of drugs. They formed the specific morphological structure of the surviving cells. This behavior is not natural for the culture of tumour cells. Perhaps this is one of the mechanisms of cells’ adaptation to the aggressive environment.

1.
U. G. A.
Sattler
,
F.
Hirschhaeuser
, and
W. F.
Mueller-Klieser
,
Curr. Med. Chem.
17
,
96
108
(
2010
).
2.
M. G.
Vander Heiden
,
Nat. Rev. Drug. Discovery
10
,
671
684
(
2011
).
3.
O.
Warburg
,
K.
Posener
, and
E.
Negelein
,
Biochem Z.
152
,
319
344
(
1924
).
4.
R. A.
Cairns
,
I. S.
Harris
, and
T. W.
Mak
,
Nat. Rev. Cancer
11
,
85
95
(
2011
).
5.
N.
Srivastava
,
R. K.
Kollipara
,
D. K.
Singh
,
J.
Sudderth
,
Z.
Hu
,
H.
Nguyen
,
S.
Wang
,
C. G.
Humphries
,
R.
Carstens
,
K. E.
Huffman
, et al.,
Cell Metab.
20
,
650
661
(
2014
).
6.
P. C.
Hart
,
M.
Mao
,
A. L.
de Abreu
,
K.
Ansenberger-Fricano
,
D. N.
Ekoue
,
D.
Ganini
,
A.
Kajdacsy-Balla
,
A. M.
Diamond
,
R. D.
Minshall
,
M. E.
Consolaro
,
J. H.
Santos
, and
M. G.
Bonini
,
Nat. Commun.
6
,
6053
(
2015
).
7.
G. K.
Shroff
,
R.
Kuna
,
K.
Dirsipam
,
R.
Yalagala
, and
P.
Mitra
,
Anti-Cancer Agents Med. Chem.
11
,
272
279
(
2011
).
8.
R.
Scatena
,
P.
Bottoni
,
A.
Pontoglio
,
L.
Mastrototaro
, and
B.
Giardina
,
Expert. Opin. Invest. Drugs
17
,
1533
1545
(
2008
).
9.
K.
Sakai
,
K.
Hasumi
, and
A.
Endo
,
Biochim. Biophys. Acta
1077
,
192
196
(
1991
).
10.
J. M.
Thornburg
,
K. K.
Nelson
,
B. F.
Clem
,
A. N.
Lane
,
S.
Arumugam
,
A.
Simmons
,
J. W.
Eaton
,
S.
Telang
, and
J.
Chesney
,
Breast Cancer Res. R
10
,
84
(
2008
).
11.
R.
Fisher
,
L.
Pusztai
, and
C.
Swanton
,
Br. J. Cancer
108
,
479
485
(
2013
).
12.
A. Q.
Sun
,
K. U.
Yüksel
,
T. M.
Jacobson
, and
R. W.
Gracy
,
Arch. Biochem. Biophys.
283
,
120
129
(
1990
).
13.
M.
Baumann
,
A.
Kappl
,
T.
Lang
,
K.
Brand
,
W.
Siegfried
, and
E.
Paterok
,
Cancer Invest.
8
,
351
356
(
1990
).
14.
Y.
Niinaka
,
S.
Paku
,
A.
Haga
,
H.
Watanabe
, and
A.
Raz
,
Cancer Res.
58
,
2667
2674
(
1998
).
15.
T.
Funasaka
,
A.
Haga
,
A.
Raz
, and
H.
Nagase
,
Biochem. Biophys. Res. Commun.
284
,
1116
1125
(
2001
).
16.
T.
Yanagawa
,
T.
Funasaka
,
S.
Tsutsumi
,
H.
Watanabe
, and
A.
Raz
,
Endocr-Relat. Cancer
11
,
749
759
(
2004
).
17.
S.
Tsutsumi
,
T.
Fukasawa
,
H. T.
Yamauchi
,
Kato
,
W.
Kigure
,
H.
Morita
,
T.
Asao
, and
H.
Kuwano
,
Int. J. Oncol.
35
,
1117
1121
(
2009
).
18.
T.
Funasaka
,
T.
Yanagawa
,
V.
Hogan
, and
A.
Raz
,
FASEB J.
19
,
1422
1430
(
2005
).
19.
T.
Funasaka
,
H.
Hu
,
V.
Hogan
, and
A.
Raz
,
J. Biol. Chem.
282
,
36362
36369
(
2007
).
20.
T.
Funasaka
,
H.
Hu
,
T.
Yanagawa
,
V.
Hogan
, and
A.
Raz
,
Cancer Res.
67
,
4236
4243
(
2007
).
21.
W. L.
Shih
,
M. H.
Liao
,
F. L.
Yu
,
P. Y.
Lin
,
H. Y.
Hsu
, and
S. J.
Chiu
,
Cancer Lett.
270
,
202
217
(
2008
).
This content is only available via PDF.
You do not currently have access to this content.