Continuous research activities in the field of nanomedicine in the past decade have, to a great extent, been focused on nanoparticle technologies for cancer therapy. Gold and iron oxide nanoparticles (NP) are two of the most studied inorganic nanomaterials due to their unique optical and magnetic properties. Both types of NPs are emerging as promising systems for anti-tumor drug delivery and for nanoparticle-mediated thermal therapy of cancer. In thermal therapy, localized heating inside tumors or in proximity of tumor cells can be induced, for example, with Au NPs by radiofrequency ablation heating or conversion of photon energy (photothermal therapy) and in iron oxide magnetic NPs by heat generation through relaxation in an alternating magnetic field (magnetic hyperthermia). Furthermore, the superparamagnetic properties of iron oxide nanoparticles have led to their use as potent MRI (magnetic resonance imaging) contrast agents. Surface modification/coating can produce NPs with tailored and desired properties, such as enhanced blood circulation time, stability, biocompatibility and water solubility. To target nanoparticles to specific tumor cells, NPs should be conjugated with targeting moieties on the surface which bind to receptors or other molecular structures on the cell surface. The article presents several approaches to enhancing the specificity of Au and iron oxide nanoparticles for tumor tissue by appropriate surface modification/functionalization, as well as the effect of these treatments on the saturation magnetization value of iron oxide NPs. The use of other nanoparticles and nanostructures in cancer treatment is also briefly reviewed.

1.
R.
Langer
,
Nature
392
,
5
10
(
1998
).
2.
O. C.
Farokhzad
and
J. M. R.
Langer
,
Adv. Drug Deliv.
58
,
1456
1459
(
2006
).
3.
R.
Petros
and
J.
DeSimone
,
Nature Rev.
9
,
615
627
(
2010
).
4.
G.
Bao
,
S.
Mitragotri
, and
S.
Tong
,
Ann. Rev. Biomed. Eng.
15
,
253
282
(
2013
).
5.
K-T.
Yong
,
I.
Roy
,
M. T.
Swihart
, and
P. N.
Prasad
,
J. Mater. Chem.
19
,
4655
4672
(
2009
).
6.
I.
Berger
,
C.
Dubernet
, and
P.
Courveur
,
Adv. Drug Del. Rev.
64
,
24
36
(
2012
).
7.
L.
Brannon-Peppas
and
J. O.
Blanchette
,
Adv. Drug Del. Rev.
64
,
206
212
(
2012
).
8.
F. X.
Gu
,
R.
Karnik
,
A. Z.
Wang
,
F.
Alexis
,
E.
Levy-Nissenbaum
, et al,
Nano Today
2
(
3
),
14
21
(
2007
).
9.
A. K.
Gupta
and
M.
Gupta
,
Biomaterials
26
,
3995
4021
(
2005
).
10.
M.
Mahmoudi
,
S.
Sant
,
B.
Wang
,
S.
Laurent
, and
T.
Sen
,
Adv. Drug Del. Rev.
63
,
24
46
(
2011
).
11.
M.
Arrueboa
,
R.
Fernandez-Pachecoa
,
M. R.
Ibarraa
, and
S.
Santamarıa
,
Nano Today
2
(
3
),
22
32
(
2007
).
12.
P. K.
Jain
,
I. H.
El-Sayed
, and
M. A.
El-Sayed
,
Nano Today
2
(
3
),
18
29
(
2007
).
13.
J.
Cardinal
,
J. R.
Klune
,
E.
Chory
,
G.
Jejabalan
,
J. S.
Kanzius
, and
M.
Nalesnik
,
Surgery
144
,
125
132
(
2008
).
14.
J.
Lu
,
Z.
Li
,
J. I.
Zink
, and
F.
Tamaori
,
Nanomedicine
8
,
213
220
(
2012
).
15.
J.
Verma
,
S.
Lal
, and
C. J. F.
Van Noorden
,
Int. J. Nanomed.
9
,
2863
2877
(
2014
).
16.
R.
Ghosh
,
L.
Pradahan
,
Y. P.
Devi
,
S. S.
Meena
,
R.
Tewari
, et al,
J. Mater. Chem.
21
,
13388
13398
(
2012
).
17.
C.
Lou
and
D.
Xing
,
Int. J. Hyperthermia
26
(
4
),
338
346
(
2010
).
18.
R. S.
McCoy
,
S.
Choi
,
G.
Collins
,
B. J.
Ackerson
, and
C. J.
Ackerson
,
ACS Nano
7
,
2610
2616
(
2013
).
19.
S.
Maluta
,
M.
Romano
,
S.
Dall’oglio
, et al,
Int. J. Hyperthermia
26
(
2
),
108
117
(
2010
).
20.
A.
Gupta
,
R. S.
Kane
, and
D-A.
Borca-Tasciuc
,
J. Appl. Phys.
108
,
064901
(
2010
).
21.
S.
Mornet
,
S.
Vasseur
,
F.
Grasset
;
P.
Veverka
,
G.
Goglio
, et al,
Prog. Solid State Chem.
34
,
237
247
(
2006
).
22.
C.
Sun.
,
J. C. H.
Lee
, and
M.
Zhang
, M.
Adv. Drug Del. Rev.
60
,
1252
1265
(
2008
).
23.
C.
Corot
,
P.
Robert
,
J. M.
Idee
, and
M.
Port
,
Adv. Drug Del. Rev.
58
,
1471
1504
(
2006
).
24.
L.
Li
,
R.
Tong
,
M.
Li
, and
D. S.
Kohane
,
Acta Biomater.
33
,
34
39
(
2016
).
25.
M.
Yokoyama
,
J. Artif. Organs.
8
,
77
84
(
2005
).
26.
M.
Longmire
,
P. L.
Choyke
, and
H.
Kobayashi
,
Nanomed.
3
,
703
717
(
2008
).
27.
M.
Gary-Bobo
,
O.
Hocine
,
D.
Brevet
,
M.
Maynadier
,
L.
Raehm
, et al,
Int. J. Parm.
423
,
509
515
(
2012
).
28.
V.
Kumar
,
G.
Toffoli
, and
F.
Rizzolio
,
ACS Med. Chem. Lett.
4
,
1012
1013
(
2013
).
29.
Z.
Liu
,
J. T.
Robinson
,
S. M.
Tabakman
,
K.
Yang
, and
H.
Dai
,
Mater. Today
14
,
316
323
(
2011
).
30.
K-Y.
Yong
,
Y.
Wang
,
I.
Roy
,
H.
Rui
,
M. T.
Swihart
, et al,
Theranostics
2
,
681
694
(
2012
).
31.
N. E.
Joo
,
K.
Ritchie
,
P.
Kamarajan
,
D.
Miao
, and
Y. L.
Kapila
,
Cancer Medicine
1
,
295
305
(
2012
).
32.
R.
Wilken
,
M. S.
Veena
,
M. B.
Wang
, and
E. S.
Srivastan
,
Molecular Cancer
10
,
2
19
(
2011
).
33.
R. K.
Maheshwari
,
A. K.
Singh
,
J.
Gaddipati
, and
R. C.
Srimall
,
Life Sci.
78
,
2081
2087
(
2006
).
34.
G.-F.
Luo
,
W.-H.
Chen
,
Y.
Liu
,
Q.
Lei
,
R.-X.
Zhuo
, and
X.-Z.
Zhang
,
Sci. Rep.
4
,
6064
(
2014
), doi 10 1038.
35.
C.
Boyer
,
M. R.
Whittaker
,
V.
Bulmus
,
V. J.
Liu
, and
T. P.
Davis
,
NPG Asia Mater.
2
,
23
30
(
2010
).
36.
M.
Di Marco
,
C.
Sadun
,
M.
Port
,
I.
Guilbert
,
P.
Couvreur
, and
C.
Dubernet
,
Int. J. Nanomed.
2
,
609
622
(
2007
).
37.
H.
Benbenishty-Shamir
,
R.
Tzur
,
I.
Gotman
,
E. Y.
Gutmanas
, and
C.
Sukenik
,
Langmuir
27
,
12082
12089
(
2011
).
38.
J. W.
Bulte
,
M.
de Cuyper
,
D.
Despres
, and
J. A.
Frank
,
J. Magn. Reson. Imaging
9
,
329
335
(
1999
).
39.
D.
Di Paolo
,
M.
Loi
,
F.
Pastorino
,
C.
Brignole
,
D.
Marimpietri
,
P.
Becherini
, et al,
Methods Enzymol.
465
,
225
249
(
2009
).
40.
G.
Mikhailov
,
U.
Mikac
,
A.
Magaeva
,
V. I.
Itin
,
E. P.
Naiden
,
I.
Psakhye
,
L.
Babes
,
T.
Reinheckel
,
C.
Peters
,
R.
Zeiger
,
M.
Bogio
,
V.
Turk
,
S. G.
Psakhye
,
B.
Turk
, and
O.
Vasiljeva
,
Nature Nanotech.
6
,
594
602
(
2011
).
41.
C.-K.
Kim
,
P.
Ghosh
, and
V. M.
Rotello
,
Nanoscale
1
,
61
67
(
2009
).
42.
H.
Liu
,
D.
Chen
,
L.
Li
,
T.
Liu
,
L.
Tan
,
X.
Wu
, and
F.
Tang
,
Angew. Chem. Int. Ed.
50
,
891
895
(
2011
).
43.
B.
Singhana
,
P.
Slattery
,
A.
Chen
,
W.
Michael
, and
M. P.
Melancon
,
AAPS Pharm. Sci. Tech.
15
,
741
752
(
2014
).
44.
E. C.
Dreaden
,
L.A.
Austin
,
M. A.
Mackey
, and
M. A.
El-Sayed
,
Ther. Deliv.
3
,
457
478
(
2012
).
45.
D.-H.
Kim
,
D. E.
Nikles
,
D. T.
Johnson
, and
C. S.
Brazel
,
J. Magn. Magnetic Mater.
320
,
2390
2396
(
2008
).
46.
Y.
Rabin
,
Int. J. Hyperthermia
18
(
3
),
194
(
2002
).
47.
S.
Masashige
,
J. Biosci. Bioeng.
94
,
606
613
(
2002
).
48.
C. B.
Collins
,
R. S.
McCoy
,
B. J.
Ackerson
,
G. J.
Collins
, and
C. J.
Ackerson
,
Nanoscale
6
,
8459
8472
(
2014
).
49.
L. R.
Hirsch
,
R. J.
Stafford
,
J. A.
Bankson
,
S. R.
Sershen
,
R.
Rivera
, et al,
Pros. Natl. Acad. Sci. USA
100
,
13549
13554
(
2003
).
50.
N. H.
Levi-Polyachenko
,
E. J.
Merkel
,
B. T.
Jones
,
D. I.
Carrol
, and
J. H.
Stewart
 IV
,
Mol. Pharm.
6
,
1092
1099
(
2009
).
51.
A. J.
Cole
,
V. C.
Yang
, and
A. E.
David
,
Trend Biotech.
29
,
323
332
(
2011
).
52.
T.
Peci
,
J. S.
Dennis
, and
M.
Baxendale
,
Carbon
87
,
226
232
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.