In this paper, a generalized third boundary value problem for the biharmonic equation in the unit ball with boundary operators up to third order containing normal derivatives and Laplacian is investigated. The existence and uniqueness theorems are proved. Some particular cases of general problem are considered.

1.
E.
Almansi
,
Annali di Matematica Pura ed Applicata
2
,
1
51
(
1899
).
2.
V. V.
Karachik
,
Computational Mathematics and Mathematical Physics
54
,
1122
1143
(
2014
).
3.
T. Sh.
Kal’menov
, and
D.
Suragan
,
Differential Equations
48
,
441
445
(
2012
).
4.
T. Sh.
Kal’menov
, and
B. D.
Koshanov
,
Siberian Mathematical Journal
49
,
423
428
(
2008
).
5.
V. V.
Karachik
,
Journal of Mathematical Analysis and Applications
287
,
577
592
(
2003
).
6.
V. V.
Karachik
,
Differential Equations
50
,
1449
1456
(
2014
).
7.
V. V.
Karachik
,
Siberian Mathematical Journal
32
,
767
774
(
1991
).
8.
V. V.
Karachik
,
M. A.
Sadybekov
, and
B. T.
Torebek
,
Electronic Journal of Differential Equations
2015
,
1
9
(
2015
), (Article ID 244).
9.
Q. A.
Dang
,
Journal of Computational and Applied Mathematics
196
,
634
643
(
2006
).
10.
A.
Gomez-Polanco
, and J. M.
Mathematical and Computer Modeling
57
,
2132
2139
(
2013
).
11.
B. E.
Kanguzhin
, and
N. E.
Tokmagambetov
,
Differential Equations
51
,
1583
1588
(
2015
).
12.
F.
Gazzola
, and
G.
Sweers
,
Arch. Rat. Mech. Anal
188
,
399
427
(
2008
).
13.
M. A.
Sadybekov
,
B. T.
Torebek
, and
B. Kh.
Turmetov
,
Complex Variables and Elliptic Equations
.
61
,
104
123
(
2016
).
14.
V. V.
Karachik
, and
N. A.
Antropova
,
Differential Equations
46
,
387
399
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.