In this paper, a generalized third boundary value problem for the biharmonic equation in the unit ball with boundary operators up to third order containing normal derivatives and Laplacian is investigated. The existence and uniqueness theorems are proved. Some particular cases of general problem are considered.
REFERENCES
1.
E.
Almansi
, Annali di Matematica Pura ed Applicata
2
, 1
–51
(1899
).2.
V. V.
Karachik
, Computational Mathematics and Mathematical Physics
54
, 1122
–1143
(2014
).3.
T. Sh.
Kal’menov
, and D.
Suragan
, Differential Equations
48
, 441
–445
(2012
).4.
T. Sh.
Kal’menov
, and B. D.
Koshanov
, Siberian Mathematical Journal
49
, 423
–428
(2008
).5.
V. V.
Karachik
, Journal of Mathematical Analysis and Applications
287
, 577
–592
(2003
).6.
V. V.
Karachik
, Differential Equations
50
, 1449
–1456
(2014
).7.
V. V.
Karachik
, Siberian Mathematical Journal
32
, 767
–774
(1991
).8.
V. V.
Karachik
, M. A.
Sadybekov
, and B. T.
Torebek
, Electronic Journal of Differential Equations
2015
, 1
–9
(2015
), (Article ID 244).9.
Q. A.
Dang
, Journal of Computational and Applied Mathematics
196
, 634
–643
(2006
).10.
A.
Gomez-Polanco
, and J. M. Mathematical and Computer Modeling
57
, 2132
–2139
(2013
).11.
B. E.
Kanguzhin
, and N. E.
Tokmagambetov
, Differential Equations
51
, 1583
–1588
(2015
).12.
F.
Gazzola
, and G.
Sweers
, Arch. Rat. Mech. Anal
188
, 399
–427
(2008
).13.
M. A.
Sadybekov
, B. T.
Torebek
, and B. Kh.
Turmetov
, Complex Variables and Elliptic Equations
. 61
, 104
–123
(2016
).14.
V. V.
Karachik
, and N. A.
Antropova
, Differential Equations
46
, 387
–399
(2010
).
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.