Reduction of plastic wastes by means of producing energy can be treated as a good investment in the waste management and recycling sectors. In this article, conversion of plastics into liquid fuel by two thermo-chemical processes, pyrolysis and gasification, are reviewed. The study showed that the catalytic pyrolysis of homogenous waste plastics produces better quality and higher quantity of liquefied fuel than that of non-catalytic pyrolysis process at a lower operating temperature. The syngas produced from gasification process, which occurs at higher temperature than the pyrolysis process, can be converted into diesel by the Fischer-Tropsch (FT) reaction process. Conducive bed material like Olivine in the gasification conversion process can remarkably reduce the production of tar. The waste plastics pyrolysis oil showed brake thermal efficiency (BTE) of about 27.75%, brake specific fuel consumption (BSFC) of 0.292 kg/kWh, unburned hydrocarbon emission (uHC) of 91 ppm and NOx emission of 904 ppm in comparison with the diesel for BTE of 28%, BSFC of 0.276 kg/kWh, uHC of 57 ppm and NOx of 855 ppm. Dissolution of Polystyrene (PS) into biodiesel also showed the potential of producing alternative transport fuel. It has been found from the literature that at higher engine speed, increased EPS (Expanded Polystyrene) quantity based biodiesel blends reduces CO, CO2, NOx and smoke emission. EPS-biodiesel fuel blend increases the brake thermal efficiency by 7.8%, specific fuel consumption (SFC) by 7.2% and reduces brake power (Pb) by 3.2%. More study using PS and EPS with other thermoplastics is needed to produce liquid fuel by dissolving them into biodiesel and to assess their suitability as a transport fuel. Furthermore, investigation to find out most suitable W-t-E process for effective recycling of the waste plastics as fuel for internal combustion engines is necessary to reduce environmental pollution and generate revenue which will be addressed in this article.

1.
E.
McLamb
, in
Fossil Fuels vs. Renewable Energy Resources
(
Ecology Global Network
,
2011
).
2.
C.
Velis
,
ISWA Taskforce Report on Globalisation and Waste Management, Report No. NA
,
2014
.
3.
C.-T.
Li
,
H.-K.
Zhuang
,
L.-T.
Hsieh
,
W.-J.
Lee
and
M.-C.
Tsao
,
Environ. Int.
27
(
1
),
61
67
(
2001
).
4.
M. N.
Siddiqui
and
H. H.
Redhwi
,
J. Anal. Appl. Pyrolysis
86
(
1
),
141
147
(
2009
).
5.
R. U.
Halden
,
Annu. Rev. Public Health
31
(
1
),
179
194
(
2010
).
6.
UNEP
,
Technical Report, Report No. DTI/1230/JP
,
2009
.
7.
M.
Chanda
and
S. K.
Roy
,
Plastics Technology Handbook
, 4th ed. (
CRC Press Taylor & Francis Group
,
New York
,
2006
).
8.
S. L.
Wong
,
N.
Ngadi
,
T. A. T.
Abdullah
and
I. M.
Inuwa
,
Renewable and Sustainable Energy Reviews
50
,
1167
1180
(
2015
).
9.
E.
Butler
,
G.
Devlin
,
D.
Meier
and
K.
McDonnell
,
Renewable and Sustainable Energy Reviews
15
(
8
),
4171
4186
(
2011
).
10.
D. R.
Askeland
,
P. P.
Fulay
and
W. J.
Wright
,
The Science and Engineering of Materials
, 6th ed. (
Cengage Learning & Global Engineering
,
USA
,
2011
).
11.
Y.
Xingzhong
, in
Feedstock Recycling and Pyrolysis of Waste Plastics, J. Scheirs, W. Kaminsky (Eds.). John Wiley & Sons Ltd., Chichester, West Sussex, England (2006), ISBN: 0-470-02152-7
, edited by
J.
Scheirs
and
W.
Kaminsky
(
John Wiley & Sons
,
2007
), pp.
729
755
.
12.
J.
Scheirs
, in
Feeds tock Recycling and Pyrolys is of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels
, edited by
J.
Scheirs
and
W.
Kaminsky
(
John Wiley & Sons Ltd.
,
Chichester, West Sussex, England
,
2006
), pp.
383
433
.
13.
G. F.
Bennett
,
J. Hazard. Mater.
147
(
1–2
),
682
683
(
2007
).
14.
J.
Aguado
,
D. P.
Serrano
and
J. M.
Escola
, in
Feeds tock Recycling and Pyrolys is of Waste Plastics: Converting Waste Plastics into Diesel and Other Fuels
, edited by
J.
Scheirs
and
W.
Kaminsky
(
John Wiley & Sons Ltd.
,
2006
).
15.
F.
Gao
, PhD,
University of Canterbury
,
2010
.
16.
M. A.
Hazrat
,
M. G.
Rasul
and
M. M. K.
Khan
,
Procedia Engineering
105
,
865
876
(
2015
).
17.
J.
Aguado
,
D. P.
Serrano
,
G. San
Miguel
,
M. C.
Castro
and
S.
Madrid
,
J. Anal. Appl. Pyrolysis
79
(
1–2
),
415
423
(
2007
).
18.
M.
Artetxe
,
G.
Lopez
,
M.
Amutio
,
G.
Elordi
,
J.
Bilbao
and
M.
Olazar
,
Chem. Eng. J.
207–208
(
0
),
27
34
(
2012
).
19.
M.
Della Zassa
,
M.
Favero
and
P.
Canu
,
J. Anal. Appl. Pyrolysis
87
(
2
),
248
255
(
2010
).
20.
A.
Karaduman
,
E. H.
Şimşek
,
B.
Çiçek
and
A. Y.
Bilgesü
,
J. Anal. Appl. Pyrolysis
62
(
2
),
273
280
(
2002
).
21.
B. K.
Sharma
,
B. R.
Moser
,
K. E.
Vermillion
,
K. M.
Doll
and
N.
Rajagopalan
,
Fuel Process. Technol.
122
(
0
),
79
90
(
2014
).
22.
C.
Wongkhorsub
and
N.
Chindaprasert
,
Energy and Power Engineering
5
,
350
355
(
2013
).
23.
J.
Devaraj
,
Y.
Robinson
and
P.
Ganapathi
,
Energy
85
,
304
309
(
2015
).
24.
Y. B.
Sonawane
,
M. R.
Shindikar
and
M. Y.
Khaladkar
,
International Journal of Innovative Research in Science, Engineering and Technology
3
(
9
),
15903
15908
(
2014
).
25.
T.
Masuda
,
H.
Kuwahara
,
S. R.
Mukai
and
K.
Hashimoto
,
Chem. Eng. Sci.
54
(
13–14
),
2773
2779
(
1999
).
26.
G.
Xi
.,
R.
Liang
. and
Q.
Tang
.,
Research of Environmental Sciences
12
(
3
),
60
61
(
1999
).
27.
A.
Brems
,
R.
Dewil
,
J.
Baeyens
and
R.
Zhang
,
Natural Science
5
(
6
),
695
704
(
2013
).
28.
U.
Arena
,
L.
Zaccariello
and
M. L.
Mastellone
,
Waste Manage.
30
(
7
),
1212
1219
(
2010
).
29.
M. P.
Aznar
,
M. A.
Caballero
,
J. A.
Sancho
and
E.
Francés
,
Fuel Process. Technol.
87
(
5
),
409
420
(
2006
).
30.
V.
Wilk
and
H.
Hofbauer
,
Fuel
107
,
787
799
(
2013
).
31.
S. M.
Al-Salem
,
P.
Lettieri
and
J.
Baeyens
,
Waste Manage.
29
(
10
),
2625
2643
(
2009
).
32.
J.
Scheirs
,
Polymer Recycling: Science, Technology and Applications
, First ed. (
Wiley-
Blackwell
,
1998
).
33.
GTC
, in
Gasification Applications and Products
(
Gasification Technologies Council
,
Arlington, VA
2011
).
34.
Gershman
,
Brickner
and
Bratton
,
Technical report, Report No. GBB/12038-01
,
2013
.
35.
H.
Sajjad
,
H. H.
Masjuki
,
M.
Varman
,
M. A.
Kalam
,
M. I.
Arbab
,
S.
Imtenan
and
S. M. A.
Rahman
,
Renewable and Sustainable Energy Reviews
30
(
0
),
961
986
(
2014
).
36.
M.-H.
Cho
,
T.-Y.
Mun
,
Y.-K.
Choi
and
J.-S.
Kim
,
Energy
70
,
128
134
(
2014
).
37.
F.
Pinto
,
C.
Franco
,
R. N.
André
,
C.
Tavares
,
M.
Dias
,
I.
Gulyurtlu
and
I.
Cabrita
,
Fuel
82
(
15–17
),
1967
1976
(
2003
).
38.
U.
Arena
,
F.
Di Gregorio
,
C.
Amorese
and
M. L.
Mastellone
,
Waste Manage.
31
(
7
),
1494
1504
(
2011
).
39.
J.
Corella
,
A.
Orío
and
J.-M.
Toledo
,
Energy & Fuels
13
(
3
),
702
709
(
1999
).
40.
C.
Brage
,
K.
Sjöström
,
Q.
Yu
,
G.
Chen
,
T.
Liliedahl
and
C.
Rosén
,
Biomass Gasification and Pyrolysis
. (
1997
).
41.
N.
Abatzoglou
,
R.
Evans
,
T. A.
Milne
and
n. Biomass
Gasifier
,
Tars”: Their Nature, Formation and Conversion.
(
1998
).
42.
P.
Straka
and
O.
Bičáková
,
Int. J. Hydrogen Energy
39
(
21
),
10987
10995
(
2014
).
43.
N.
Kuzhiyil
and
S.-C.
Kong
,
Energy & Fuels
23
(
6
),
3246
3253
(
2009
).
44.
Y.
Zhang
,
S. K.
Mallapragada
and
B.
Narasimhan
,
Polymer Engineering & Science
50
(
5
),
863
870
(
2009
).
45.
P. R.
Harshal
and
L. M.
Shailendra
,
Research Journal of Engineering Sciences
2
(
2
),
26
30
(
2013
).
46.
P.
Mohammadi
,
A. M.
Nikbakht
,
M.
Tabatabaei
and
K.
Farhadi
,
International Journal of Automotive Engineering
2
(
3
),
156
162
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.