Simultaneous Thermal Analysis (STA) and Thermodilatometry Analysis (TDA) are done to reveal the structural and chemical changes in UHPFRC during its high-temperature load. Based on the measured results, several physical and chemical processes that studied material underwent at high-temperatures are recognized. In the temperature interval from 25 to 300 °C, the liberation of physically bound water from pores and the dehydration reaction of C-S-H take place. Additionally, AFt and AFm phases dehydrate at 110 – 156 °C. Endothermic peat at 460 °C corresponds to the portlandite decomposition. At 575 °C, the α → β transformation of quartz is found. This reaction is accompanied by a sharp endothermic heat flow peak and a volume expansion, whereas no change of mass is measured. In the temperature interval 580-800 °C, the calcite and C-S-H gels decomposition is monitored. At the temperature above 800 °C, there is one significant exothermal peak corresponding to a crystallization of wollastonite. In summary, STA and TDA data pointed out the structural changes in studied UHPFRC and allowed identification of critical temperatures for its damage.

1.
K.K.
Sideris
,
P.
Manita
, and
E.
Chaniotakis
,
Constr. Build. Mater.
23
,
1232
1239
(
2009
).
2.
3.
P.
Kalifa
,
F.D.
Menneteau
, and
D.
Quenard
,
Cem. Concr. Res.
30
,
1915
1927
(
2000
).
4.
G.
Sanjayan
and
L.J.
Stocks
,
ACI Mat. J.
90
,
170
173
(
1993
).
5.
S.
Sanchayan
and
S.J.
Foster
,
Mater. Struct.
49
,
769
(
2016
)
7.
F.J.
Ulm
,
O.
Coussy
, and
Z.P.
Bazant
,
J. Eng. Mech.
125
,
272
282
(
1999
).
8.
P.
Richard
and
M.
Cheyrezy
,
Cem. Concr. Res.
25
,
1501
1511
(
1995
).
9.
EN 197-1
Cement – Part 1: Composition, specifications and conformity criteria for common cements
,
CEN
,
2012
10.
I.
Antepara
, et al,
Mater. Sci.-Medzg.
22
,
88
93
(
2016
).
11.
EN 12390-5
Testing hardened concrete – Part 5: Flexural strength of test specimens
,
CEN
,
2009
.
12.
EN 12390-3
Testing hardened concrete – Part 3: Compressive strength of test specimens
,
CEN
,
2009
.
13.
Z.
Pavlík
, et al,
Cem. Wapno Beton
19
,
67
80
(
2014
).
14.
Z.
Pavlík
, et al,
J. Clean. Prod.
112
,
409
419
(
2016
).
15.
Z.
Pavlík
, et al,
Int. J. Thermophys.
37
,
32
(
2016
).
16.
Z.
Pavlík
, et al,
Int. J. Thermophys.
34
,
851
864
(
2013
).
17.
Y.
Zhang
, et al,
Cem. Concr. Comp.
30
,
831
838
(
2008
).
18.
R.
You
,
P.
Spiesz
, and
H.J.H.
Brouwers
,
Constr. Build. Mater.
79
,
273
282
(
2015
).
19.
R.
You
,
P.
Spiesz
, and
H.J.H.
Brouwers
,
Cem. Concr. Res.
56
,
29
39
(
2014
).
20.
R.
Toledo Filho
, et al,
Mater. Design
36
,
880
888
(
2012
).
21.
G.
Villain
,
M.
Thiery
, and
G.
Platret
,
Cem. Concr. Res.
37
,
1182
1192
(
2007
).
22.
A.H.
Akca
and
N.Ö.
Zihnioĝlu
,
Constr. Build. Mater.
44
,
317
328
(
2013
).
23.
J.P.
Ingham
,
Mater. Charact.
60
,
700
709
(
2009
).
24.
A.
Yazdani
,
H.R.
Rezaie
, and
H.
Ghassai
,
J. Ceram. Process Res.
11
,
348
353
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.