Lime plasters are the most popular finishing materials in renewal of historical buildings and culture monuments. Because of their limited durability, new materials and design solutions are investigated in order to improve plasters performance in harmful environmental conditions. For the practical use, the plasters mechanical resistivity and the compatibility with substrate are the most decisive material parameters. However, also plasters hygric and thermal parameters affecting the overall hygrothermal function of the renovated structures are of the particular importance. On this account, the effect of moisture content on the thermophysical properties of a newly designed lime plasters containing hydrophobic admixture is analysed in the paper. For the comparative purposes, the reference lime and cement-lime plasters are tested as well. Basic characterization of the tested materials is done using bulk density, matrix density, and porosity measurements. Thermal conductivity and volumetric heat capacity in the broad range of moisture content are experimentally accessed using a transient impulse method. The obtained data reveals the significant increase of the both studied thermal parameters with increasing moisture content and gives information on plasters behaviour in a highly humid environment and/or in the case of their possible direct contact with liquid water. The accessed material parameters will be stored in a material database, where can find use as an input data for computational modelling of coupled heat and moisture transport in this type of porous building materials.

1.
G.
Cultrone
,
E.
Sebastián
, and
M.
Ortega Huertas
,
Cem. Concr. Res.
35
,
2278
2289
(
2005
).
2.
J.
Lanas
and
J.I.
Álvarez-Galindo
,
Cem. Concr. Res.
33
,
1867
1876
(
2003
)
3.
M.
Pavlíková
, et al.,
Constr. Build. Mater.
25
,
1205
1212
(
2011
).
4.
J.
Hošek
and
L.
Losos
,
Historické omítky – průzkumy, sanace, typologie
(
Grada Publishing
,
Prague
,
2007
, in Czech).
5.
M.
Lezzerini
, et al.,
Constr. Build. Mater.
69
,
203
212
(
2014
).
6.
J.
Cabrera
and
M.F.
Rojas
,
Cem. Concr. Res.
31
,
177
182
(
2001
).
7.
B.
Isikdag
and
I.B.
Topcu
,
Sci. Eng. Compos. Mater.
21
,
359
367
(
2014
).
8.
O.
Cizer
,
K.
Van Balen
, and
D.
Van Gemert
,
Adv. Mat. Res.
133-134
,
241
246
(
2010
)
9.
O.
Cizer
, “
Competition between carbonation and hydration on the hardening of calcium hydroxide and calcium silicate binders
,” PhD thesis,
K. U. Leuven
,
2009
.
10.
R.
Pernicová
, “
Materiálové a fyzikální parametry inovovaných vápenných omítek vhodných pro použití na rekonstrukce historických budov
,” Ph.D. thesis (in Czech),
CTU Prague
,
2012
.
11.
M.
Jiřičková
, “
Application of TDR Microprobes and Minihygrometry to the Determination of Moisture Transport and Moisture Storage parameters of Building Materials
,” Ph.D. thesis,
CTU Prague
,
2004
.
12.
Z.
Pavlík
, et al., “The thermal and mechanical performance of cement-based composites with enhanced thermal insulation properties”, in
Heat Transfer XIII: Simulation and Experiments in Heat and Mass Transfer
, edited by
B.
Sundén
and
C.A.
Brebia
(
WIT Press
,
Southampton
,
2014
), pp.
251
260
.
13.
J.
Fořt
, et al.,
Mater. Sci. – Medyiagotyra
22
,
132
137
(
2016
).
14.
J.
Khedari
, et al.,
Cem. Concr. Compos.
23
,
65
70
(
2001
).
15.
Z.
Pavlík
, et al.,
Int. J. Thermophys.
30
,
1999
2014
(
2009
).
16.
R.
Černý
, et al.,
Constr. Build. Mater.
20
,
849
857
(
2006
).
17.
B.
Mazhoud
, et al.,
Build. Environ.
96
,
206
216
(
2016
)
18.
Z.
Pavlík
, et al.,
Int. J. Thermophys.
35
,
767
782
(
2014
).
19.
D.
Taoukil
, et al.,
Constr. Build. Mater.
48
,
104
115
(
2015
)
This content is only available via PDF.
You do not currently have access to this content.