Pulverized combustion fly ash (PFA) from the Power plant Nováky (Slovakia) is analyzed for its potential use in the production of building ceramics. Three materials are used to prepare the mixtures: illite-rich clay (IRC), PFA and IRC fired at 1000 °C (called grog). The mixtures contain 60 % of IRC and 40 % of a non-plastic compound (grog or PFA). A various amount of the grog is replaced by PFA and the effect of this substitution is studied. Thermal analyses (TGA, DTA, thermodilatometry, and dynamical thermomechanical analysis) are used to analyze the processes occurring during firing. The flexural strength and thermal conductivity are determined at room temperature after firing in the temperature interval from 800 to 1100 °C. The results show that an addition of PFA slightly decreases the flexural strength. The thermal conductivity and porosity are practically unaffected by the presence of PFA. Thus, PFA from the Power plant Nováky is a convenient non-plastic component for manufacturing building ceramics.

1.
C.
Heidrich
,
H. J.
Feuerborn
, and
A.
Weir
,
Coal combustion products: a global perspective
. in
2013 World of Coal Ash (WOCA) Conference
.
2013
.
Lexington, Kentucky, USA
.
2.
I.
Queralt
, et al.,
Fuel
76
(
8
),
787
791
(
1997
).
3.
H. J.
Feuerborn
,
Coal ash utilization over the world and in Europe
. in
Workshop on Environmental and Health Aspects of Coal Ash Utilization
,
2005
.
Tel-Aviv, Israel
.
4.
S.
Hartuti
, et al.,
J. Anal. Methods Chem.
2012
,
1
6
(
2012
).
5.
N. B.
Singh
, et al.,
J. Therm. Anal. Calorim.
119
(
1
),
381
389
(
2015
).
6.
S.
Wang
,
C.
Zhang
, and
J.
Chen
,
J. Mater. Sci. Technol.
30
(
12
),
1208
1212
(
2014
).
7.
Z.
Zhang
, et al.,
Cement Concrete Res.
64
(
10
),
30
41
(
2014
).
8.
M.
Visa
,
Powder Technol.
294
(
6
),
338
347
(
2016
).
9.
A.
Zimmer
and
C. P.
Bergmann
,
Waste Manage.
27
(
1
),
59
68
(
2007
).
10.
G.
Cultrone
and
E.
Sebastián
,
Constr. Build. Mater.
23
(
2
),
1178
1184
(
2009
).
11.
N.
Chandra
, et al.,
Waste Manage.
28
(
10
),
1993
2002
(
2008
).
12.
X.
Lingling
, et al.,
Constr. Build. Mater.
19
(
3
),
243
247
(
2005
).
13.
S.
Mukherji
, et al.,
Brit. Ceram. T.
92
(
6
),
254
257
(
1993
).
14.
R.
Sokolar
and
L.
Smetanova
,
Ceram. Int.
36
(
1
),
215
221
(
2010
).
15.
R.
Sokolar
and
L.
Vodova
,
Ceram. Int.
37
(
7
),
2879
2885
(
2011
).
16.
O. C.
Sola
, et al.,
Adv. Mater. Sci. Eng.
2011
,
1
6
(
2011
).
17.
T.
Húlan
, et al.,
J. Therm. Anal. Calorim.
2016
. In press.
18.
S.
Ferrari
and
A.
Gualtieri
,
Appl. Clay Sci.
32
(
1-2
),
73
81
(
2006
).
19.
R.
Podoba
,
A.
Trník
, and
Ľ
Podobník
,
Épitőanyag
64
(
1-2
),
28
29
(
2012
).
20.
T.
Húlan
,
A.
Trník
, and
I.
Štubňa
,
Vesnik MGOU, seria fizika – matematika
2014
(
2
),
21
29
(
2014
).
21.
ASTM C 1259-01
,
Standard test method for dynamic Young’s modulus, shear modulus and Poisson's ratio for advanced ceramics by impulse excitation of vibration
.
ASTM Standards
,
2011
.
Philadelphia, USA
.
22.
I.
Štubňa
, et al.,
Meas. Sci. Rev.
14
(
1
),
35
40
(
2014
).
23.
M.
Knapek
, et al.,
J. Eur. Ceram. Soc.
36
(
1
),
221
226
(
2016
).
This content is only available via PDF.
You do not currently have access to this content.