Laser Doppler Vibrometry (LDV) has been demonstrated to be a non-contact technique with high sensitivity, able to measure the skin vibrations related to cardiac activity. The obtainable mechanical signal (i.e. a velocity signal), VibroCardioGram (VCG), is able to provide significant physiological parameters, such as Heart Rate (HR). In this work, the authors aim to present a non-contact measurement method to obtain the arterial blood pressure signal from the mechanical vibrations assessed by LDV, in a central district of the arterial tree, such as carotid artery. In fact, in this way it is possible to indirectly assess Central Arterial Blood Pressure (CABP), which indicates the hemodynamic load on the heart, so that it is considered an important index predicting the cardiac risk of a subject. The measurement setup involves the use of an oscillometric cuff, to measure peripheral blood pressure at the radial artery level. Diastolic and Mean Arterial Pressure (MAP) at radial level were used to calibrate the integrated LDV signal (i.e. a displacement signal). As regard calibration, an exponential mathematical model was adopted to derive the pressure waveform from the displacement of the vessel detected by LDV. Results show an average difference of around 20% between systolic pressure measured at brachial level (i.e. peripheral pressure value) and systolic pressure derived from VCG signal measured over the carotid artery (i.e. central pressure). This is a physiological difference, consistent with the literature about the physiological increase of Systolic Blood Pressure (SBP) and Pressure Pulse (PP) at increased distances from the heart. However, this non-contact technique is affected by movement artifacts and by reflection phenomena not related to the studied vessel and so it is necessary to account of such issues in the results.

1.
M. A.
Quail
,
J. A.
Steeden
,
D.
Knight
,
P.
Segers
,
A. M.
Taylor
, and
V.
Muthurangu
, “
Development and validation of a novel method to derive central aortic systolic pressure from the MR aortic distension curve
,”
J. Magn. Reson. Imaging JMRI
, vol.
40
, no.
5
, pp.
1064
1070
, Nov.
2014
.
2.
J.
Sharman
,
M.
Stowasser
,
R.
Fassett
,
T.
Marwick
, and
S.
Franklin
, “
Central blood pressure measurement may improve risk stratification
,”
J. Hum. Hypertens.
, vol.
22
, no.
12
, pp.
838
844
, Dec.
2008
.
3.
McDonald’s Blood Flow in Arteries, Sixth Edition: Theoretical, Experimental and Clinical Principles
,”
CRC Press
, 29-Jul-2011. [Online]. Available: https://www.crcpress.com/McDonalds-Blood-Flow-in-Arteries-Sixth-Edition-Theoretical-Experimental/Nichols-ORourke-Vlachopoulos/9780340985014. [Accessed: 16-Apr-2016].
4.
S. J.
Vermeersch
,
E. R.
Rietzschel
,
M. L.
De Buyzere
,
D.
De Bacquer
,
G.
De Backer
,
L. M.
Van Bortel
,
T. C.
Gillebert
,
P. R.
Verdonck
, and
P.
Segers
, “
Determining carotid artery pressure from scaled diameter waveforms: comparison and validation of calibration techniques in 2026 subjects
,”
Physiol. Meas.
, vol.
29
, no.
11
, pp.
1267
1280
, Nov.
2008
.
5.
S. A.
Hope
,
I. T.
Meredith
, and
J. D.
Cameron
, “
Arterial transfer functions and the reconstruction of central aortic waveforms: myths, controversies and misconceptions
,”
J. Hypertens.
, vol.
26
, no.
1
, pp.
4
7
, Jan.
2008
.
6.
J.
Vappou
,
J.
Luo
,
K.
Okajima
,
M.
Di Tullio
, and
E. E.
Konofagou
, “
Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)
,”
Physiol. Meas.
, vol.
32
, no.
10
, pp.
1653
1662
, Oct.
2011
.
7.
M.
Pinotti
,
N.
Paone
,
F. A.
Santos
, and
E. P.
Tomasini
, “
Carotid artery pulse wave measured by a laser vibrometer
,”
1998
, vol.
3411
, pp.
611
616
.
8.
P.
Marchionni
,
L.
Scalise
,
I.
Ercoli
, and
E. P.
Tomasini
, “
An optical measurement method for the simultaneous assessment of respiration and heart rates in preterm infants
,”
Rev. Sci. Instrum.
, vol.
84
, no.
12
, p.
121705
, Dec.
2013
.
9.
S.
Casaccia
,
L.
Scalise
,
L.
Casacanditella
,
E. P.
Tomasini
, and
J. W.
Rohrbaugh
, “
Non-contact assessment of muscle contraction: Laser Doppler Myography
,” in
2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
,
2015
, pp.
610
615
.
10.
M.
Chen
,
J. A.
O’Sullivan
,
N.
Singla
,
E. J.
Sirevaag
,
S. D.
Kristjansson
,
P. H.
Lai
,
A. D.
Kaplan
, and
J. W.
Rohrbaugh
, “
Laser Doppler Vibrometry Measures of Physiological Function: Evaluation of Biometric Capabilities
,”
IEEE Trans. Inf. Forensics Secur.
, vol.
5
, no.
3
, pp.
449
460
, Sep.
2010
.
11.
S.
Casaccia
,
E. J.
Sirevaag
,
E.
Richter
,
J. A.
O’Sullivan
,
L.
Scalise
, and
J. W.
Rohrbaugh
, “
Decoding carotid pressure waveforms recorded by laser Doppler vibrometry: Effects of rebreathing
,” in
AIP Conference Proceedings
,
2014
, vol.
1600
, pp.
298
312
.
12.
G.
Cosoli
,
L.
Casacanditella
,
E. P.
Tomasini
, and
L.
Scalise
, “
Evaluation of Heart Rate Variability by means of Laser Doppler Vibrometry measurements
,”
J. Phys. Conf. Ser.
, vol.
658
, no.
1
, p.
012002
,
2015
.
13.
A. R.
Ahlgren
,
F.
Hansen
,
B.
Sonesson
, and
T.
Länne
, “
Stiffness and diameter of the common carotid artery and abdominal aorta in women
,”
Ultrasound Med. Biol.
, vol.
23
, no.
7
, pp.
983
988
,
1997
.
14.
J.
Krejza
,
M.
Arkuszewski
,
S. E.
Kasner
,
J.
Weigele
,
A.
Ustymowicz
,
R. W.
Hurst
,
B. L.
Cucchiara
, and
S. R.
Messe
, “
Carotid Artery Diameter in Men and Women and the Relation to Body and Neck Size
,”
Stroke
, vol.
37
, no.
4
, pp.
1103
1105
, Apr.
2006
.
15.
G.
Cosoli
,
L.
Casacanditella
,
F.
Pietroni
,
A.
Calvaresi
,
G. M.
Revel
, and
L.
Scalise
, “
A novel approach for features extraction in physiological signals
,” in
2015 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
,
2015
, pp.
380
385
.
16.
R.
Mukkamala
,
J.-O.
Hahn
,
O. T.
Inan
,
L. K.
Mestha
,
C.-S.
Kim
,
H.
Töreyin
, and
S.
Kyal
, “
Toward Ubiquitous Blood Pressure Monitoring via Pulse Transit Time: Theory and Practice
,”
IEEE Trans. Biomed. Eng.
, vol.
62
, no.
8
, pp.
1879
1901
, Aug.
2015
.
17.
L.
Scalise
and
U.
Morbiducci
, “
Non-contact cardiac monitoring from carotid artery using optical vibrocardiography
,”
Med. Eng. Phys.
, vol.
30
, no.
4
, pp.
490
497
, May
2008
.
18.
G.
Cosoli
,
L.
Casacanditella
,
E. P.
Tomasini
, and
L.
Scalise
, “
The non-contact measure of the heart rate variability by laser doppler vibrometry: comparison with electrocardiography
,”
Meas. Sci. Tecnol.
, p. (in press).
19.
E. J.
Sirevaag
,
S.
Casaccia
,
E. A.
Richter
,
J. A.
O’Sullivan
,
L.
Scalise
, and
J. W.
Rohrbaugh
, “
Cardiorespiratory interactions: Noncontact assessment using laser Doppler vibrometry
,”
Psychophysiology
, Mar.
2016
.
This content is only available via PDF.
You do not currently have access to this content.