In this article, we develop a Runge-Kutta method with invalidation of phase lag, phase lag’s derivatives and amplification error to solve second-order initial value problem (IVP) with oscillating solutions. The new method depends on the explicit Runge-Kutta method of algebraic order four. Numerical tests from its implementation to well-known oscillatory problems illustrate the robustness and competence of the new method as compared to the well-known Runge-Kutta methods in the scientific literature.
REFERENCES
1.
P.
Van der Houwen
and B.
Sommeijer
, SIAM Journal on Numerical Analysis
24
, 595
–617
(1987
).2.
T. E.
Simos
and J. V.
Aguiar
, Computers & chemistry
25
, 275
–281
(2001
).3.
D.
Papadopoulos
, Z.
Anastassi
, and T.
Simos
, Journal of molecular modeling
16
, 1339
–1346
(2010
).4.
I.
Alolyan
and T.
Simos
, Journal of mathematical chemistry
48
, 925
–958
(2010
).5.
Z.
Anastassi
and T.
Simos
, International Journal of Modern Physics C
15
, 1
–15
(2004
).6.
Q.
Ming
, Y.
Yang
, and Y.
Fang
, Mathematical Problems in Engineering
2012
(2012
).7.
D.
Papadopoulos
, O. T.
Kosmas
, T.
Simos
, T. E.
Simos
, G.
Psihoyios
, C.
Tsitouras
, and Z.
Anastassi
, “Deriving numerical techniques with zero phase-lag and derivatives for initial value problems of second order
,” in AIP Conference Proceedings-American Institute of Physics
, Vol. 1479
(2012
) p. 1407
.8.
Z.
Anastassi
, D.
Vlachos
, and T.
Simos
, Journal of mathematical chemistry
46
, 1158
–1171
(2009
).9.
D. F.
Papadopoulos
and T.
Simos
, Applied Mathematics & Information Sciences
7
, 433
–437
(2013
).10.
D.
Papadopoulos
and T.
Simos
, International Journal of Modern Physics C
22
, 623
–634
(2011
).11.
C.
Tsitouras
and T.
Simos
, Journal of Computational and Applied Mathematics
147
, 397
–409
(2002
).12.
Z.
Anastassi
and T.
Simos
, New Astronomy
10
, 31
–37
(2004
).13.
S.
Ahmad
, F.
Ismail
, N.
Senu
, and M.
Suleiman
, Applied Mathematics and Computation
219
, 10096
–10104
(2013
).14.
T.
Simos
and J.
Vigo-Aguiar
, Computer Physics Communications
152
, 274
–294
(2003
).15.
J. R.
Dormand
, Numerical methods for differential equations: a computational approach
, Vol. 3
(CRC Press
, 1996
).16.
D.
Papadopoulos
, Z.
Anastassi
, and T.
Simos
, MATCH Commun. Math. Comput. Chem
64
, 551
–566
(2010
).17.
T.
Simos
, Computer Physics Communications
115
, 1
–8
(1998
).18.
T.
Simos
, IMA journal of numerical analysis
21
, 919
–931
(2001
).19.
H.
Van de Vyver
, Computer physics communications
166
, 109
–122
(2005
).20.
P.
Chakravarti
and P.
Worland
, BIT Numerical Mathematics
11
, 368
–383
(1971
).21.
E.
Stiefel
and D.
Bettis
, Numerische Mathematik
13
, 154
–175
(1969
).
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.