A graph G = (V, E) is a proper zero-divisor difference graph if and only if there is a positive integer n and a set SZn, the set of all positive zero-divisors of the ring Zn such that V = S and (x, y) ∈ E if and only if yxw(mod n) for some wV. If S = Zn, then the graph is called a zero-divisor difference graph. In this paper we discuss the characteristics and structural properties of zero-divisor difference graphs. i.e. We prove the results on connectedness, degree, planarity, isomorphism etc. of zero-divisor difference graphs depending on the value of n.

1.
I.
Beck
,
Journal of Algebra
116
,
208
226
(
1988
).
2.
G.S.
Bloom
,
P.
Hell
and
H.
Taylor
,
Annals of New York Academy of Sciences
319
,
93
102
(
1979
).
3.
J.
Bolland
,
R.
Laskar
,
C.
Turner
,
G.
Domke
,
Congressus Numerantium
70
,
131
135
(
1990
).
4.
J.B.
Fraleigh
,
A First Course in Abstract Algebra
(
Pearson Education
,
Harlow, UK
,
2003
).
5.
S.V.
Gervacio
,
Proceedings of the Second Franco-Southeast Asian Mathematics Conference
,
University of Philippines
,
1982
.
6.
R.P.
Grimaldi
,
Congressus Numerantium
71
(
1990
),
95
104
.
7.
F.
Harary
,
Congressus Numerantium
72
(
1990
),
101
108
.
8.
F.
Harary
,
Graph Theory
(
Addison-Wesley
,
Reading, MA
,
1969
).
9.
S.M.
Hegde
and
Vasudeva
,
AKCE Journal of Graph and Combinatorics
6
,
79
84
(
2009
).
10.
I.
Niven
,
H.S.
Zuckerman
and
H.L.
Montgamery
,
An Introduction to The Theory of Numbers
(
John Wiley & Sons, Inc.
,
New York, NY
,
1991
).
11.
D.B.
West
,
Introduction to Graph Theory
(
Prentice Hall
,
Upper Saddle River, NJ
,
2001
).
This content is only available via PDF.
You do not currently have access to this content.