This paper considers Newton-MSOR iterative method for solving 1D nonlinear porous medium equation (PME). The basic concept of proposed iterative method is derived from a combination of one step nonlinear iterative method which known as Newton method with Modified Successive Over Relaxation (MSOR) method. The reliability of Newton-MSOR to obtain approximate solution for several PME problems is compared with Newton-Gauss-Seidel (Newton-GS) and Newton-Successive Over Relaxation (Newton-SOR). In this paper, the formulation and implementation of these three iterative methods have also been presented. From four examples of PME problems, numerical results showed that Newton-MSOR method requires lesser number of iterations and computational time as compared with Newton-GS and Newton-SOR methods.

1.
J. L.
Vazquez
,
The porous medium equation: Mathematical theory
. (
Deptt of Mathematics Madrid
,
Spain
,
2006
)
2.
A. M.
Elsheikh
and
T. M.
Elzaki
,
Int. J. Dev. Res.
5
(
6
),
4677
4680
(
2015
).
3.
A.
Taghavi
,
A.
Babaei
and
A.
Mohammadpour
,
Int. J. Adv. Appl. Math. Mech.
2
(
3
),
95
100
(
2015
).
4.
E.
Abdolmaleki
and
S. A.
Yousefi
,
Am. J. Numer. Anal.
2
(
1
),
11
13
(
2014
).
5.
U. O.
Dangui-Mbani
,
L. C.
Zheng
and
X. X.
Zhang
,
Am. J. Eng. Res.
3
(
9
),
224
232
(
2014
).
6.
P. K. G.
Bhadane
and
V. H.
Pradhan
,
Int. J. Res. Eng. Tech.
2
(
12
),
116
119
(
2013
).
7.
K. S.
Tailor
,
G. A.
Rathva
and
P. H.
Bhathawala
,
Int. J. Adv. Eng. Tech.
6
(
2
),
804
811
(
2013
).
8.
T. M.
Elzaki
and
E. M. A.
Hilal
,
Math. Theor. Model.
2
(
3
),
33
42
(
2012
).
9.
J. H.
Barrera
, “
A Spectral Galerkin Approximation of the Porous Medium Equation
”, Ph.D. Thesis,
Cornell University
,
2011
.
10.
V. H.
Pradhan
,
M. N.
Mehta
and
T.
Patel
,
Int. J. Adv. Eng. Tech.
2
(
1
),
221
227
(
2011
).
11.
M.
Sari
,
Math. Probs. Eng.
doi:, (
2009
).
12.
A. M.
Wazwaz
,
Comput. Math. Appl.
54
,
933
939
(
2007
).
13.
S.
Pamuk
,
Phys. Lett. A
, (
344
),
184
188
(
2005
).
14.
Y.
Saad
,
Iterative methods for sparse linear systems
, 2nd Ed. (
Society for Industrial and Applied Mathematics
,
Philadelpha
,
2003
).
15.
D. M.
Young
,
Math. Comput.
24
(
122
),
793
807
(
1970
).
16.
D. M.
Young
,
Iterative Solution of Large Linear Systems
(
Academic Press
,
Florida
,
2014
).
17.
A.
Hadjidomos
,
J. Comput. Appl. Math.
123
,
177
199
(
2000
).
18.
D. M.
Young
and
R. T.
Gregory
,
A survey of numerical mathematics
. Vol.
2
(
Addison-Wesley
,
Philippines, 1973
), pp.
1016
1038
.
19.
D. R.
Kincaid
and
D. M.
Young
,
Math. Comput.
26
(
119
),
705
717
(
1972
).
20.
A. D.
Polyanin
and
V. F.
Zaitsev
,
Handbook of Nonlinear Partial Differential Equation
. (
Chapman & Hall
,
Boca Raton
,
2004
).
21.
I. K.
Youssef
and
R. A.
Ibrahim
,
Life Sci. J.
10
(
2
),
304
312
(
2013
).
22.
I. K.
Youssef
and
A. A.
Taha
,
Appl. Math. Comput.
219
,
4601
4613
(
2013
).
23.
M. K. M.
Akhir
,
M.
Othman
,
J.
Sulaiman
,
Z. A.
Majid
and
M.
Suleiman
,
Aust. J. Basic Appl. Sci.
5
(
12
),
3033
3039
(
2011
).
24.
R. J.
Arms
,
L. D.
Gates
and
B.
Zondek
,
J. Soc. Ind. Appl. Math.
4
(
4
),
220
229
(
1956
).
This content is only available via PDF.
You do not currently have access to this content.