In this paper we consider Ising model on the semi-infinite Cayley tree of second order with left and right interaction and investigate the problem of phase transition for this model.

1.
R. J.
Baxter
,
Exactly solvable models in statistical mechanics
(
Academic Press London
,
New York
,
1982
).
2.
R.
Bissacot
, and
L. M.
Cioletti
,
J. Stat. Phys.
139
(
5
),
769
778
(
2010
).
3.
P. M.
Bleher
, and
N. N.
Ganikhodjaev
,
Theory Probab. Appl.
35
,
216
227
(
1990
).
4.
P. M.
Bleher
,
J.
Ruiz
, and
V.
Zagrebnov
,
J. Stat. Phys.
93
,
33
78
(
1998
).
5.
F. J.
Dyson
,
Comm. Math. Phys.
12
,
91
107
(
1969
).
6.
D.
Gandolfo
,
M. M.
Rakhmatullaev
,
U. A.
Rozikov
, and
J.
Ruiz
,
J. Stat. Phys.
150
(
6
),
1201
1217
(
2013
).
7.
D.
Gandolfo
,
J.
Ruiz
, and
S.
Shlosman
,
J. Stat. Phys.
148
,
999
1005
(
2012
).
8.
N. N.
Ganikhodjaev
, and
U. A.
Rozikov
,
Theor. Math. Phys.
111
,
480
486
(
1997
).
9.
N. N.
Ganikhodjaev
, and
U. A.
Rozikov
,
Math. Phys., Anal. Geom.
12
,
141
156
(
2009
).
10.
N. N.
Ganikhodjaev
,
Theor. Math. Phys.
130
(
3
),
419
424
(
2002
).
11.
N. N.
Ganikhodjaev
,
C. H.
Pah
, and
M. R. B.
Wahiddin
,
J. Phys. A
36
,
4283
4289
(
2003
).
12.
N. N.
Ganikhodjaev
,
C. H.
Pah
, and
M. R. B.
Wahiddin
,
J. Math. Phys.
45
,
3645
3658
(
2004
).
13.
H.-O.
Georgii
, Gibbs Measures and Phase Transitions,
Walter de Gruyter
, (
de Gruyter Studies in Mathematics
, vol
9
),
Berlin-New York
,
1988
.
14.
R.
Kindermann
, and
J. L.
Snell
,
American Mathematical society, Providence
,
1980
.
15.
C. J.
Preston
,
Gibbs States on Countable Sets
(
Cambridge University Press
,
London
,
1974
).
16.
U. A.
Rozikov
,
Rev. Math. Phys.
,
25
(
1
),
1330001
(
2013
).
17.
U. A.
Rozikov
,
Gibbs measures on Cayley trees
(
World Scientific Publishing
,
Singapore
,
2013
).
18.
Y. G.
Sinai
,
Theory of Phase Transitions:Rigorous Results
(
Pergamon Press
,
Oxford
,
1982
).
19.
F.
Spitzer
,
Ann. Probab.
3
,
387
398
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.