Some of the phase separation processes are typically modeled by well known Cahn-Hilliard equation with obstacle potential. Solving these equations correspond to a nonsmooth and nonlinear optimization problem. Recently a globally convergent Newton Schur method was proposed for the non-linear Schur complement corresponding to this 2 × 2 non-linear system. The discrete linear problem has essentially three parameters: the mesh size, time step, and a parameter related to interface width. The preconditioners considered so far has not been robust to one of these parameters. We propose preconditioners that seem to be robust provided the mesh is sufficiently refined.
REFERENCES
1.
C.
Graeser
, and R.
Kornhuber
, SIAM Journal on Numerical Analysis
47
, 1251
–1273
(2009
).2.
J.
Barrett
, R.
Nurnberg
, and V.
Styles
, SIAM J. Numer. Anal.
42
, 738
–772
(2004
).3.
R.
Kornhuber
, Numerische Mathematik
pp. 167
–184
(1994
).4.
R.
Kornhuber
, Numerische Mathematik
pp. 481
–499
(1996
).5.
J.
Mandel
, applied mathematics and optimization
11
, 77
–95
(1984
).6.
7.
W.
Zulehner
, SIAM Journal on Matrix Analysis and Applications
32
, 536
–560
(2011
).8.
C.
Graser
, Convex Minimization and Phase Field Models
, Ph.D. thesis, FU
Berlin
(2011
).9.
J. F.
Blowey
, and C. M.
Elliott
, European J. Appl. Math.
pp. 233
–280
(1991
).10.
J. F.
Blowey
, and C. M.
Elliott
, European J. Appl. Math.
(1992
).11.
A.
Wathen
, and D.
Silvester
, SIAM J. Numer. Anal.
30
, 630
–649
(1993
).12.
A.
Wathen
, and D.
Silvester
, SIAM J. Numer. Anal.
31
, 1352
–1367
(1994
).13.
J.
Bosch
, M.
Stoll
, and P.
Benner
, Journal of Computational Physics
262
, 38
–57
(2014
), ISSN , URL .14.
P.
Kumar
, International Journal of Computer Mathematics
91
, 1251
–1273
(2014
).15.
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.