Some of the phase separation processes are typically modeled by well known Cahn-Hilliard equation with obstacle potential. Solving these equations correspond to a nonsmooth and nonlinear optimization problem. Recently a globally convergent Newton Schur method was proposed for the non-linear Schur complement corresponding to this 2 × 2 non-linear system. The discrete linear problem has essentially three parameters: the mesh size, time step, and a parameter related to interface width. The preconditioners considered so far has not been robust to one of these parameters. We propose preconditioners that seem to be robust provided the mesh is sufficiently refined.

1.
C.
Graeser
, and
R.
Kornhuber
,
SIAM Journal on Numerical Analysis
47
,
1251
1273
(
2009
).
2.
J.
Barrett
,
R.
Nurnberg
, and
V.
Styles
,
SIAM J. Numer. Anal.
42
,
738
772
(
2004
).
3.
R.
Kornhuber
,
Numerische Mathematik
pp.
167
184
(
1994
).
4.
R.
Kornhuber
,
Numerische Mathematik
pp.
481
499
(
1996
).
5.
J.
Mandel
,
applied mathematics and optimization
11
,
77
95
(
1984
).
6.
C.
Graser
, and
R.
Kornhuber
,
Journal of Computational Mathematics
27
,
1
44
(
2009
).
7.
W.
Zulehner
,
SIAM Journal on Matrix Analysis and Applications
32
,
536
560
(
2011
).
8.
C.
Graser
,
Convex Minimization and Phase Field Models
, Ph.D. thesis,
FU
Berlin
(
2011
).
9.
J. F.
Blowey
, and
C. M.
Elliott
,
European J. Appl. Math.
pp.
233
280
(
1991
).
10.
J. F.
Blowey
, and
C. M.
Elliott
,
European J. Appl. Math.
(
1992
).
11.
A.
Wathen
, and
D.
Silvester
,
SIAM J. Numer. Anal.
30
,
630
649
(
1993
).
12.
A.
Wathen
, and
D.
Silvester
,
SIAM J. Numer. Anal.
31
,
1352
1367
(
1994
).
13.
J.
Bosch
,
M.
Stoll
, and
P.
Benner
,
Journal of Computational Physics
262
,
38
57
(
2014
), ISSN , URL .
14.
P.
Kumar
,
International Journal of Computer Mathematics
91
,
1251
1273
(
2014
).
15.
Y.
Notay
,
Electronic Transactions on Numerical Analysis
37
,
123
146
(
2010
), ISSN .
This content is only available via PDF.
You do not currently have access to this content.