A numerical solution of a Navier-Stokes problem based on the Weighted Least Squares (WLS) approximation of velocity and pressure fields is presented in this paper. The approximation function is constructed over the local support, i.e., a sub cluster of computational nodes. Besides local approximation of the fields also the pressure-velocity algorithm is constructed locally. The presented solution procedure is demonstrated on two classical fluid-flow benchmark tests, i.e., lid-driven cavity and backward-facing step problem. The method is validated through comparison against already published data on regular nodal distributions and convergence analyses. In addition the method is also tested on irregular nodal distributions. Results are presented in terms of cross-section velocity profiles and convergence plots.

1.
J.H.
Ferziger
and
M.
Perić
,
Computational Methods for Fluid Dynamics
.
2002
,
Berlin
:
Springer
.
2.
R.A.
Gingold
and
J.J.
Monaghan
, “
Smoothed particle hydrodynamics: theory and application to non-spherical stars
”.
Mon. Not. Roy. Astron. So
,
181
:
375
389
(
1977
).
3.
M.
Šterk
and
R.
Trobec
, “
Meshless solution of a diffusion equation with parameter optimization and error analysis
”.
Engineering Analysis with Boundary Elements
,
32
(
7
):
567
577
(
2008
).
4.
C.
Prax
,
H.
Sadat
and
E.
Dabboura
, “
Evaluation of high order versions of the diffuse approximate meshless method
”.
Applied Mathematics and Computation
186
:
1040
1053
(
2007
).
5.
G.
Kosec
and
B.
Šarler
, “
Solution of thermo-fluid problems by collocation with local pressure correction
”.
International Journal of Numerical Methods for Heat & Fluid Flow
,
18
:
868
882
(
2008
).
6.
C.
Yang
, et al, “
Meshless generalized finite difference method and human carotid atherosclerotic plaque progression simulation using multi-year MRI patient-tracking data
”.
CMES: Computer Modeling in Engineering & Sciences
,
28
(
2
):
95
107
(
2008
).
7.
H.
Arzani
and
M.H.
Afshar
, “
Solving Poisson’s equation by the discrete least square meshless method
”.
WIT Transactions on Modelling and Simulation
42
:
23
31
(
2006
).
8.
F.
Arpino
, et al, “
Artificial compressibility based CBS solutions for double diffusive natural convection in cavities
”.
International Journal of Numerical Methods for Heat & Fluid Flow
,
23
(
1
):
205
225
(
2013
).
9.
C.A.
Wang
,
H.
Sadat
and
C.
Prax
, “
A new meshless approach for three dimensional fluid flow and related heat transfer problems
”.
Computers and Fluids
,
69
:
136
146
(
2012
).
10.
U.
Ghia
,
K.
Ghia
and
C.
Shin
,
Journal of Computational Physics
48
:
387
411
(
1982
).
11.
D.K.
Gartling
, “
A test problem for outflow boundary conditions—flow over a backward-facing step
”.
International Journal for Numerical Methods in Fluids
,
11
(
7
):
953
967
(
1990
).
12.
K.
Mramor
,
R.
Vertnik
and
B.
Šarler
, “
Low and Intermediate Re Solution of Lid Driven Cavity Problem by Local Radial Basis Function Collocation Method
”.
CMC: Computers, Materials, & Continua
,
1
:
1
21
(
2013
).
13.
R.
Trobec
,
M.
Šterk
and
B.
Robič
, “
Computational complexity and parallelization of the meshless local Petrov-Galerkin method
”.
Computers & Structures
,
87
(
1-2
):
81
90
(
2009
).
14.
M.
Depolli
,
B. Filipič
and
R.
Trobec
, Parallel evolutionary algorithm for heterogeneous computer systems, in
ParNum
11
.
2011
:
Leibnitz
. p.
26
37
.
15.
G.
Kosec
, “
Simulation of multiphase thermo-fluid phenomena by a local meshless numerical approach
.”.
Informatica
,
36
:
227
228
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.