REFERENCES
1.
T.
Alkurdi
, S. C.
Hille
and O.
van Gaans
, Ergodicity and stability of a dynamical system perturbed by impulsive random interventions
, J. Math. An. Appl.
63
, 480
–494
(2013
).2.
M. F.
Barnsley
, S. G.
Demko
, J. H.
Elton
and J. S.
Geronimo
, Invariant measures arising from iterated function systems with place dependent probabilities
, Ann. Inst. Henri Poincare
24
, 367
–394
(1988
).3.
H.
Bessaih
, R.
Kapica
and T.
Szarek
, Criterion on stability for Markov processes applied to some model with jumps
, Semigroup Forum
88
, 76
–92
(2014
).4.
P.
Billingsley
, Convergence of Probability Measures
, Wiley, New York
, 1999
.5.
M.
Hairer
, J.
Mattingly
and M.
Scheutzow
, Asymptotic coupling and a general form of Harris theorem with applications to stochastic delay equations
, Prob. Theory Rel. Fields
149
(1
), 223
–259
(2011
).6.
K.
Horbacz
and M.
Ślęczka
, Law Of Large Numbers For Random Dynamical Systems
, arXiv:1304.6863 (2013
).7.
M.
Iosifescu
and R.
Theodorescu
, Random processes and learning
, Springer
, New York
, 1969
.8.
R.
Kapica
and M.
Ślęczka
, Random Iterations with place dependent probabilities
, arXiv:1107.0707 (2012
).9.
A.
Lasota
, Dynamical systems on measures. Lectures
, University of Silesia Press
, Katowice
, 2008
(in Polish).10.
A.
Lasota
and M.
Myjak
, Semifractals on Polish spaces
, Bull. Polish Acad. Sci. Math.
46
, 179
–196
(1998
).11.
A.
Lasota
, “From fractals to stochastic differential equations
”, in Chaos – The Interplay Between Stochastic and Deterministic Behaviour (Karpacz ’95)
, Lecture Notes in Phys.
457
, Springer
, Berlin
, 1995
, pp. 235
–255
.12.
A.
Lasota
and C.
Mackey
, Cell division and the stability of cellular population
, J. Math. Biol.
38
, 241
–261
(1999
).13.
A.
Lasota
and T.
Szarek
, Lower bound technique in the theory of a stochastic differential equation
, J. Differential Equations
231
, 513
–533
(2006
).14.
A.
Lasota
and J.
Yorke
, Lower bound technique for Markov operators and iterated function systems
, Random Comput. Dynam.
2
,41
–77
(1994
).15.
S. P.
Meyn
and R. L.
Tweedie
, Markov chains and stochastic stability
, Springer-Verlag
, London
, 1993
.16.
C.
Odasso
, Exponential mixing for stochastic PDEs: the non-additive case
, Probab. Theory Rel. Fields
140
, 41
–82
(2008
).17.
18.
T.
Szarek
, The stability of Markov operators on Polish spaces
, Studia Math.
143
, 145
–152
(2000
).19.
T.
Szarek
, Invariant measures for Markov operators with applications to function systems
, Studia Math.
154
(3
), 207
–222
(2003
).20.
T.
Szarek
, Feller processes on nonlocally compact spaces
, Ann. Probab.
34
, 1849
–1863
(2006
).21.
T.
Szarek
and D. T. H.
Worm
, Ergodic measures of Markov semigroups with the e-property
, Ergodic Theory Dynamical Systems
32
(3
), 1117
–1135
(2012
).
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.