Article PDF first page preview

First page of The stability of Markov chains with partially equicontinuous transition structure
1.
T.
Alkurdi
,
S. C.
Hille
and
O.
van Gaans
,
Ergodicity and stability of a dynamical system perturbed by impulsive random interventions
,
J. Math. An. Appl.
63
,
480
494
(
2013
).
2.
M. F.
Barnsley
,
S. G.
Demko
,
J. H.
Elton
and
J. S.
Geronimo
,
Invariant measures arising from iterated function systems with place dependent probabilities
,
Ann. Inst. Henri Poincare
24
,
367
394
(
1988
).
3.
H.
Bessaih
,
R.
Kapica
and
T.
Szarek
,
Criterion on stability for Markov processes applied to some model with jumps
,
Semigroup Forum
88
,
76
92
(
2014
).
4.
P.
Billingsley
,
Convergence of Probability Measures
,
Wiley, New York
,
1999
.
5.
M.
Hairer
,
J.
Mattingly
and
M.
Scheutzow
,
Asymptotic coupling and a general form of Harris theorem with applications to stochastic delay equations
,
Prob. Theory Rel. Fields
149
(
1
),
223
259
(
2011
).
6.
K.
Horbacz
and
M.
Ślęczka
,
Law Of Large Numbers For Random Dynamical Systems
, arXiv:1304.6863 (
2013
).
7.
M.
Iosifescu
and
R.
Theodorescu
,
Random processes and learning
,
Springer
,
New York
,
1969
.
8.
R.
Kapica
and
M.
Ślęczka
,
Random Iterations with place dependent probabilities
, arXiv:1107.0707 (
2012
).
9.
A.
Lasota
, Dynamical systems on measures.
Lectures
,
University of Silesia Press
,
Katowice
,
2008
(in Polish).
10.
A.
Lasota
and
M.
Myjak
,
Semifractals on Polish spaces
,
Bull. Polish Acad. Sci. Math.
46
,
179
196
(
1998
).
11.
A.
Lasota
, “
From fractals to stochastic differential equations
”, in
Chaos – The Interplay Between Stochastic and Deterministic Behaviour (Karpacz ’95)
,
Lecture Notes in Phys.
457
,
Springer
,
Berlin
,
1995
, pp.
235
255
.
12.
A.
Lasota
and
C.
Mackey
,
Cell division and the stability of cellular population
,
J. Math. Biol.
38
,
241
261
(
1999
).
13.
A.
Lasota
and
T.
Szarek
,
Lower bound technique in the theory of a stochastic differential equation
,
J. Differential Equations
231
,
513
533
(
2006
).
14.
A.
Lasota
and
J.
Yorke
,
Lower bound technique for Markov operators and iterated function systems
,
Random Comput. Dynam.
2
,
41
77
(
1994
).
15.
S. P.
Meyn
and
R. L.
Tweedie
,
Markov chains and stochastic stability
,
Springer-Verlag
,
London
,
1993
.
16.
C.
Odasso
,
Exponential mixing for stochastic PDEs: the non-additive case
,
Probab. Theory Rel. Fields
140
,
41
82
(
2008
).
17.
D.
Revuz
,
Markov Chains
,
North-Holland Elsevier
,
Amsterdam
,
1975
.
18.
T.
Szarek
,
The stability of Markov operators on Polish spaces
,
Studia Math.
143
,
145
152
(
2000
).
19.
T.
Szarek
,
Invariant measures for Markov operators with applications to function systems
,
Studia Math.
154
(
3
),
207
222
(
2003
).
20.
T.
Szarek
,
Feller processes on nonlocally compact spaces
,
Ann. Probab.
34
,
1849
1863
(
2006
).
21.
T.
Szarek
and
D. T. H.
Worm
,
Ergodic measures of Markov semigroups with the e-property
,
Ergodic Theory Dynamical Systems
32
(
3
),
1117
1135
(
2012
).
This content is only available via PDF.
You do not currently have access to this content.