There are many space subdivision and space partitioning techniques used in many algorithms to speed up computations. They mostly rely on orthogonal space subdivision, resp. using hierarchical data structures, e.g. BSP trees, quadtrees, octrees, kd-trees, bounding volume hierarchies etc. However in some applications a non-orthogonal space subdivision can offer new ways for actual speed up. In the case of convex polygon in E2 a simple Point-in-Polygon test is of the O(N) complexity and the optimal algorithm is of O(log N) computational complexity. In the E3 case, the complexity is O(N) even for the convex polyhedron as no ordering is defined.

New Point-in-Convex Polygon and Point-in-Convex Polyhedron algorithms are presented based on space subdivision in the preprocessing stage resulting to O(1) run-time complexity. The presented approach is simple to implement. Due to the principle of duality, dual problems, e.g. line-convex polygon, line clipping, can be solved in a similarly.

1.
Haines
,
E.
:
Point in polygon strategies. Graphics Gems IV
, Ed.
Heckbert
,
P.
,
Academic Press
, pp.
24
46
,
1994
.
2.
Gombosi
,
M.
,
Zalik
,
B.
:
Point-in-polygon tests for geometric buffers
.
Comp.& Geosciences
31
(
10
),
1201
1212
,
2005
3.
Hormann
,
K
,
Agathos
,
A.
:
The point in polygon problem for arbitrary polygons
,
Computational Geometry: Theory and Applications
,
2001
,
20
(
3
), pp.
131
144
, 2001
4.
Huang
,
C.W.
,
Shih
,
T.Y.
:
On the complexity of point-in-polygon algorithms
,
Comp.& Geosciences
23
(
1
),
109
118
,
1997
.
5.
Jiménez
,
J.J.
,
Feito
,
F.R.
,
Segura
,
R.J.
:
A new hierarchical triangle-based point-in-polygon data structure
.
Comp.&Geosciences
35
(
9
),
1843
1853
,
2009
6.
Jiménez
,
J.
J
,
Feito
,F.R.,
Segura
,
R.J.
:
Robust and optimized algorithms for the point-in-polygon inclusion test without pre-processing
.
Computer Graphics Forum
,
28
(
8
), pp.
2264
2274
,
2009
7.
Lane
,
J.
,
Megedson
,
B.
,
Rarick
,
M.
:
An efficient Point in Polyhedron Algorithm, Computer Vision
,
Graphics and Image Processing
, Vol.
26
, pp.
118
125
,
1984
8.
Li
,
J.
,
Wang.
W.
,
Wu
,
E.
:
Point-in-polygon tests by convex decomposition
,
Comp.&Graphics
,
31
, (
4
), pp.
636
648
,
2007
9.
Li
,
J.
,
Wang
,
W.-C.
:
Point-in-polygon test method based on center points of grid
,
Journal of Software
, Vol.
23
, No.
9
,
2012
, pp.
2481
2488
, 2012
10.
Martinez
,
F.
,
Rueda
,
A.J.
,
Feito
,
F.R.
:
The multi-L-REP decomposition and its application to a point-in-polygon inclusion test
.
Comp.&Graphics
30
(
6
),
947
958
,
2006
.
11.
Skala
,
V.
: Algorithms for Line and Plane Intersection with a Convex Polyhedron with O(sqrt(N)) Complexity in E3,
SIGGRAPH Asia 2014
, ISBN:978-1-4503-2792-3,
Shenzen, China
,
2014
12.
Skala
,
V.
:
Trading Time for Space: an O(1) Average time Algorithm for Point-in-Polygon Location Problem
.
Theoretical Fiction or Practical Usage? Machine Graphics and Vision
, Vol.
5
., No.
3
., pp.
483
494
,
1996
13.
Skala
,
V.
:
Line Clipping in E2 with O(1) Processing Complexity
,
Comp.&Graphics
, Vol.
20
, No.
4
, pp.
523
530
,
1996
.
14.
Skala
,
V.
:
O(lg N) Line Clipping Algorithm in E2
,
Comp.&Graphics
,
Pergamon Press
, Vol.
18
, No.
4
, pp.
517
524
,
1994
15.
Solomon
,
K.
:
An Efficient Point-in-Polygon Algorithm
,
Comp.&Geosciences
, Vol.
4
, pp.
173
178
,
1978
16.
Wang
,
W.C.
,
Li
,
J.
,
Wu
,
E.H.
:
2D point-in-polygon test by classifying edges into layers
,
Comp.& Graphics
, Vol.
29
, No.
3
., pp.
427
439
,
2005
17.
Yang
,
S
,
Yong
,
J.H.
,
Sun
,
J.
,
Gu
,
H.
,
Paul
,
J.C.
:
A point-in-polygon method based on a quasi-closest point
.
Comp.&Geosciences
,
36
(
2
):
205
213
,
2010
This content is only available via PDF.
You do not currently have access to this content.