Lipschitz global optimization appears in many practical problems: decision making, optimal control, stability problems, finding the minimal root problems, etc. In many engineering applications the objective function is a “black-box”, multiextremal, non-differentiable and hard to evaluate. Another common property of the function to be optimized very often is the Lipschitz condition. In this talk, the Lipschitz global optimization problem is considered and several nature-inspired and Lipschitz global optimization algorithms are briefly described and compared with respect to the number of evaluations of the objective function.
REFERENCES
1.
S. A.
Piyavskij
, USSR Computational Mathematics and Mathematical Physics
12
, 57
–67
(1972
).2.
Y. D.
Sergeyev
, and D. E.
Kvasov
, Diagonal Global Optimization Methods
, Fizmatlit
, Moscow
, 2008
, in Russian
.3.
Y. D.
Sergeyev
, R. G.
Strongin
, and D.
Lera
, Introduction to Global Optimization Exploiting Space-Filling Curves
, Springer
, New York
, 2013
.4.
P.
Hansen
, and B.
Jaumard
, “Lipschitz optimization,” in Handbook of Global Optimization
, Kluwer Academic Publishers
, Dordrecht
, 1995
, vol. 1
, pp. 407
–493
.5.
J. D.
Pintér
, “Global optimization: software, test problems, and applications,” in Handbook of Global Optimization
, edited by P. M.
Pardalos
, and H. E.
Romeijn
, Kluwer Academic Publishers
, Dordrecht
, 2002
, vol. 2
, pp. 515
–569
.6.
R.
Storn
, and K.
Price
, Differential evolution — a simple and efficient adaptive scheme for global optimization over continuous spaces
, Tech. rep., ICSI
(1995
).7.
K.
Price
, R.
Storn
, and J.
Lampinen
, Differential Evolution: A Practical Approach to Global Optimization
, Springer
, 2005
.8.
R.
Storn
, and K.
Price
, Journal of Global Optimization
11
, 341
–359
(1997
).9.
J.
Kennedy
, and R.
Eberhart
, IEEE International Conference on Neural Networks
pp. 1942
–1948
(1995
).10.
D.
Karaboga
, An idea based on honey bee swarm for numerical optimization
, Tech. rep.
, Erciyes University
(2005
).11.
X.-S.
Yang
, Luniver Press
(2008
).12.
J. W.
Gillard
, and A. A.
Zhigljavsky
, Journal of Global Optimization
57
, 733
–751
(2013
).13.
K.
Barkalov
, A.
Polovinkin
, I.
Meyerov
, S.
Sidorov
, and N.
Zolotykh
, “SVM regression parameters optimization using parallel global search algorithm,” in Parallel Computing Technologies
, Springer
, 2013
, vol. 7979
of LNCS, pp. 154
–166
.14.
D.
Famularo
, P.
Pugliese
, and Y. D.
Sergeyev
, Automatica
35
, 1605
–1611
(1999
).15.
A. V.
Gergel
, V. A.
Grishagin
, and R. G.
Strongin
, Vestnik of Nizhni Novgorod State University
6
(1
) (2013
), in Russian
.16.
D. E.
Kvasov
, and Y. D.
Sergeyev
, Optimization Letters
3
, 303
–318
(2009
).17.
D. E.
Kvasov
, and Y. D.
Sergeyev
, Journal of Computational and Applied Mathematics
236
, 4042
–4054
(2012
).18.
D. E.
Kvasov
, and Y. D.
Sergeyev
, Advances in Engineering Software
80
, 58
–66
(2015
).19.
Y. D.
Sergeyev
, Journal of Optimization Theory and Applications
107
, 145
–168
(2000
).20.
Y. D.
Sergeyev
, D.
Famularo
, and P.
Pugliese
, Journal of Global Optimization
21
, 317
–341
(2001
).21.
Y. D.
Sergeyev
, and V. A.
Grishagin
, Journal of Optimization Theory and Applications
80
, 513
–536
(1994
).22.
R. G.
Strongin
, and Y. D.
Sergeyev
, Parallel Computing
18
, 1259
–1273
(1992
).23.
D.
Lera
, and Y. D.
Sergeyev
, SIAM Journal on Optimization
1
, 508
–529
(2013
).24.
D. E.
Kvasov
, and Y. D.
Sergeyev
, Automation and Remote Control
74
, 1435
–1448
(2013
).25.
R.
Paulavičius
, Y. D.
Sergeyev
, D. E.
Kvasov
, and J.
Žilinskas
, Journal of Global Optimization
59
, 545
–567
(2014
).26.
D.
Lera
, and Y. D.
Sergeyev
, Journal of Global Optimization
48
, 99
–112
(2010
).27.
D. E.
Kvasov
, C.
Pizzuti
, and Y. D.
Sergeyev
, Numerische Mathematik
94
, 93
–106
(2003
).28.
D.
Lera
, and Y. D.
Sergeyev
, Applied Numerical Mathematics
60
, 115
–129
(2010
).29.
V. P.
Gergel
, and Y. D.
Sergeyev
, Computers & Mathematics with Applications
37
, 163
–180
(1999
).30.
V. A.
Grishagin
, Y. D.
Sergeyev
, and R. G.
Strongin
, Journal of Global Optimization
10
, 185
–206
(1997
).31.
Y. D.
Sergeyev
, Computational Optimization and Applications
34
, 229
–248
(2006
).32.
Y. D.
Sergeyev
, and D. E.
Kvasov
, Communications in Nonlinear Science and Numerical Simulation
21
, 99
–111
(2015
).33.
Y. D.
Sergeyev
, SIAM Journal on Optimization
5
, 858
–870
(1995
).34.
Y. D.
Sergeyev
, Computational Mathematics and Mathematical Physics
35
, 705
–717
(1995
).
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.