Multidimensional unconstrained global optimization problem with objective function under Lipschitz condition is considered. For solving this problem the dimensionality reduction approach on the base of the nested optimization scheme is used. This scheme reduces initial multidimensional problem to a family of one-dimensional subproblems being Lipschitzian as well and thus allows applying univariate methods for the execution of multidimensional optimization. For two well-known one-dimensional methods of Lipschitz optimization the modifications providing the acceleration of the search process in the situation when the objective function is continuously differentiable in a vicinity of the global minimum are considered and compared. Results of computational experiments on conventional test class of multiextremal functions confirm efficiency of the modified methods.

1.
R.
Horst
,
P. M.
Pardalos
, and
N. V.
Thoai
,
Introduction to Global Optimization
,
Dordrecht
:
Kluwer Academic Publishers
,
1995
.
2.
J. D.
Pintér
,
Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications)
,
Dordrecht
:
Kluwer Academic Publishers
,
1996
.
3.
R. G.
Strongin
, and
Y. D.
Sergeyev
,
Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms
,
Dordrecht
:
Kluwer Academic Publishers
,
2000
.
4.
A. A.
Zhigljavsky
,
Theory of Global Random Search
,
Dordrecht
:
Kluwer Academic Publishers
,
1991
.
5.
A. R.
Butz
,
Inform. Control
12
,
314
330
(
1968
).
6.
B.
Goertzel
,
Applied Mathematics Letters
12
,
133
135
(
1999
).
7.
A. E.
Hime
,
H. A.
Oliveira
, and
J. A.
Petraglia
,
Soft Computing in Industrial Applications
96
,
121
130
(
2011
).
8.
Y. D.
Sergeyev
,
R. G.
Strongin
, and
D.
Lera
,
Introduction to Global Optimization Exploiting Space-Filling Curves
,
Springer
,
2013
.
9.
D. R.
Jones
,
C. D.
Perttunen
, and
B. E.
Stuckman
,
Journal of Optimization Theory and Applications
79
,
157
181
(
1993
).
10.
Y. D.
Sergeyev
,
Journal of Optimization Theory and Applications
107
,
145
168
(
2000
).
11.
D. E.
Kvasov
, and
Y. D.
Sergeyev
,
Comput. Math. Math. Phys.
43
,
40
56
(
2003
).
12.
D. E.
Kvasov
, and
Y. D.
Sergeyev
,
Journal of Computational and Applied Mathematics
236
,
4042
4054
(
2012
).
13.
A.
Molinaro
,
C.
Pizzuti
, and
Y. D.
Sergeyev
,
Computational Optimization and Applications
18
,
5
26
(
2001
).
14.
D.
Lera
, and
Y. D.
Sergeyev
,
SIAM Journal on Optimization
23
,
508
529
(
2013
).
15.
R.
Paulavičius
,
Y.
Sergeyev
,
D. E.
Kvasov
, and
J.
Žilinskas
,
Journal of Global Optimization
59
,
545
567
(
2014
).
16.
S. A.
Piyavskij
,
USSR Comput. Math. Math. Phys.
12
,
57
67
(
1972
).
17.
V. A.
Grishagin
, and
R. G.
Strongin
,
Engineering Cybernetics
5
,
117
122
(
1984
).
18.
L.
Shi
, and
S.
Ólafsson
,
Operations Research
48
,
390
407
(
2000
).
19.
Y. D.
Sergeyev
, and
V. A.
Grishagin
,
Journal of Computational Anaysis and Applications
3
,
123
145
(
2001
).
20.
E. R.
Dam
,
B.
Husslage
, and
D.
Hertog
,
Journal of Global Optimization
46
,
287
306
(
2010
).
21.
K. A.
Barkalov
, and
V. P.
Gergel
,
Proceedings of the 1-st International Conference on Engineering and Applied Sciences Optimization
,
Kos Island, Greece
pp.
2111
2124
(
2014
).
22.
C. R.
Carr
, and
C. W.
Howe
,
Quantitative Decision Procedures in Management and Economic: Deterministic Theory and Applications
,
New York
:
McGraw–Hill
,
1964
.
23.
R. G.
Strongin
,
Numerical Methods in Multiextremal Problems (Information-Statistical Algorithms)
,
Moscow
:
Nauka
,
1978
.
24.
V. A.
Grishagin
,
Y. D.
Sergeyev
, and
R. G.
Strongin
,
Journal of Global Optimization
10
,
185
206
(
1997
).
25.
Y. D.
Sergeyev
,
SIAM Journal on Optimization
5
,
858
870
(
1995
).
26.
M.
Gaviano
,
D. E.
Kvasov
,
D.
Lera
, and
Y. D.
Sergeyev
,
ACM TOMS
29
,
469
480
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.