In this paper the global optimization problem where the objective function is multiextremal and satisfying the Lipschitz condition over a hyperinterval is considered. An algorithm that uses Peano-type space-filling curves to reduce the original Lipschitz multi-dimensional problem to a univariate one satisfying the Hölder condition is proposed. The algorithm at each iteration applies a new geometric technique working with a number of possible Hölder constants chosen from a set of values varying from zero to infinity showing so that ideas introduced in a popular DIRECT method can be used in the Hölder global optimization, as well. Convergence condition are given. Numerical experiments show quite a promising performance of the new technique.
REFERENCES
1.
K.
Barkalov
, A.
Polovinkin
, I.
Meyerov
, S.
Sidorov
, and N.
Zolotykh
, Lecture Notes in Computer Science
, 7979
LNCS, 154
–166
(2013
).2.
Yu.G.
Evtushenko
, USSR Compututational Mathematics and Mathematical Physics
11
, 1390
–1403
(1971
).3.
D.
Famularo
, P.
Pugliese
, and Ya.D.
Sergeyev
, Automatica
35
(9
), 1605
–1611
(1999
).4.
Ya.D.
Sergeyev
, and V.A.
Grishagin
V.A., Journal of Optimization Theory and Applications
, 80
(3
), 513
–536
(1994
).5.
R.
Horst
, and P.M.
Pardalos
, Handbook of Global Optimization
, Kluwer Academic Publishers
, Dordrecht
, 1995
.6.
D.R
Jones
, C.D.
Perttunen
, and B.E.
Stuckman
, Journal of Optimization Theory and Applications
, 79
, 157
–181
(1993
).7.
R.
Paulavičius
, and J.
Žilinskas
, Simplicial Global Optimization
, Springer
, New York
, 2014
.8.
R.
Paulavičius
, Ya.D.
Sergeyev
, D.E.
Kvasov
, and J.
Žilinskas
, Journal of Global Optimization
, 59
(2-3
), 545
–567
(2014
).9.
J.
Pintér
, Global Optimization in Action
, Kluwer Academic Publishers
, Dordrecht
, 1996
.10.
Ya.D.
Sergeyev
, and D.E.
Kvasov
, SIAM Journal on Optimization
16
, 910
–937
(2006
).11.
Ya.D.
Sergeyev
, and D.E.
Kvasov
, Diagonal global optimization methods
, Fizmatlit
, Moscov
, (in Russian
), 2008
.12.
R.G
Strongin
, and Ya.D.
Sergeyev
, Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms
, Kluwer Academic Publishers
, Dordrecht
, 2000
.13.
R.G.
Strongin
, and Ya.D.
Sergeyev
, Journal of Global Optimization
, 27
(1
), 25
–50
(2003
).14.
A.A.
Zhigljavsky
and A.
Žilinskas
, Stochastic Global Optimization
, Springer
, New York
, 2008
.15.
D.E.
Kvasov
, and Ya.D.
Sergeyev
, Automation and Remote Control
74
(9
), 1435
–1448
(2013
).16.
Ya.D.
Sergeyev
, Journal of Optimization Theory and Applications
107
(1
), 145
–168
(2000
).17.
D.E.
Kvasov
, and Ya.D.
Sergeyev
, Optimization Letters
3
(2
), 303
–318
(2009
).18.
D.E.
Kvasov
, and Ya.D.
Sergeyev
, Journal of Computational and Applied Mathematics
236
(16
), 4042
–4054
(2012
).19.
Ya.D.
Sergeyev
, D.
Famularo
, and P.
Pugliese
, Journal of Global Optimization
21
(3
), 317
–341
(2001
).20.
D.E.
Kvasov
, C.
Pizzuti
, and Ya.D.
Sergeyev
, Numerische Mathematik
94
(1
) 93
–106
(2003
).21.
D.
Lera
, and Ya.D.
Sergeyev
, SIAM Journal on Optimization
23
(1
), 508
–529
(2013
).22.
Ya.D
Sergeyev
, R.G.
Strongin
, and D.
Lera
, Introduction to Global Optimization Exploiting Space-Filling Curves
, Springer
, New York
, 2013
.23.
R.G.
Strongin
, Numerical Methods in Multiextremal Problems
, Nauka
, Moscow
. (In Russian
), 1978
.24.
R.G.
Strongin
, Journal of Global Optimization
2
, 357
–378
(1992
).25.
D.
Lera
, and Ya.D.
Sergeyev
, Journal of Global Optimization
48
(1
), 99
–112
(2010
).26.
D.
Lera
, and Ya.D.
Sergeyev
, Applied Numerical Mathematics
60
(1-2
), 115
–129
(2010
).27.
R.G.
Strongin
, and Ya.D.
Sergeyev
, Parallel Computing
18
, 1259
–1273
(1992
).28.
D.
Lera
, and Ya.D.
Sergeyev
, Communications in Nonlinear Science and Numerical Simulation
, 23
, 328
–342
(2015
).29.
M.J.
Gablonsky
, and C.T.
Kelley
, Journal of Global Optimization
, 21
, 27
–37
(2001
).30.
M.
Gaviano
, D.E.
Kvasov
, D.
Lera
, and Ya.D.
Sergeyev
, ACM Transactions on Mathematical Software
, 29
(4
), 469
–480
(2003
).
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.