In this paper the global optimization problem where the objective function is multiextremal and satisfying the Lipschitz condition over a hyperinterval is considered. An algorithm that uses Peano-type space-filling curves to reduce the original Lipschitz multi-dimensional problem to a univariate one satisfying the Hölder condition is proposed. The algorithm at each iteration applies a new geometric technique working with a number of possible Hölder constants chosen from a set of values varying from zero to infinity showing so that ideas introduced in a popular DIRECT method can be used in the Hölder global optimization, as well. Convergence condition are given. Numerical experiments show quite a promising performance of the new technique.

1.
K.
Barkalov
,
A.
Polovinkin
,
I.
Meyerov
,
S.
Sidorov
, and
N.
Zolotykh
,
Lecture Notes in Computer Science
,
7979
LNCS,
154
166
(
2013
).
2.
Yu.G.
Evtushenko
,
USSR Compututational Mathematics and Mathematical Physics
11
,
1390
1403
(
1971
).
3.
D.
Famularo
,
P.
Pugliese
, and
Ya.D.
Sergeyev
,
Automatica
35
(
9
),
1605
1611
(
1999
).
4.
Ya.D.
Sergeyev
, and
V.A.
Grishagin
V.A.,
Journal of Optimization Theory and Applications
,
80
(
3
),
513
536
(
1994
).
5.
R.
Horst
, and
P.M.
Pardalos
,
Handbook of Global Optimization
,
Kluwer Academic Publishers
,
Dordrecht
,
1995
.
6.
D.R
Jones
,
C.D.
Perttunen
, and
B.E.
Stuckman
,
Journal of Optimization Theory and Applications
,
79
,
157
181
(
1993
).
7.
R.
Paulavičius
, and
J.
Žilinskas
,
Simplicial Global Optimization
,
Springer
,
New York
,
2014
.
8.
R.
Paulavičius
,
Ya.D.
Sergeyev
,
D.E.
Kvasov
, and
J.
Žilinskas
,
Journal of Global Optimization
,
59
(
2-3
),
545
567
(
2014
).
9.
J.
Pintér
,
Global Optimization in Action
,
Kluwer Academic Publishers
,
Dordrecht
,
1996
.
10.
Ya.D.
Sergeyev
, and
D.E.
Kvasov
,
SIAM Journal on Optimization
16
,
910
937
(
2006
).
11.
Ya.D.
Sergeyev
, and
D.E.
Kvasov
,
Diagonal global optimization methods
,
Fizmatlit
,
Moscov
, (
in Russian
),
2008
.
12.
R.G
Strongin
, and
Ya.D.
Sergeyev
,
Global Optimization with Non-convex Constraints: Sequential and Parallel Algorithms
,
Kluwer Academic Publishers
,
Dordrecht
,
2000
.
13.
R.G.
Strongin
, and
Ya.D.
Sergeyev
,
Journal of Global Optimization
,
27
(
1
),
25
50
(
2003
).
14.
A.A.
Zhigljavsky
and
A.
Žilinskas
,
Stochastic Global Optimization
,
Springer
,
New York
,
2008
.
15.
D.E.
Kvasov
, and
Ya.D.
Sergeyev
,
Automation and Remote Control
74
(
9
),
1435
1448
(
2013
).
16.
Ya.D.
Sergeyev
,
Journal of Optimization Theory and Applications
107
(
1
),
145
168
(
2000
).
17.
D.E.
Kvasov
, and
Ya.D.
Sergeyev
,
Optimization Letters
3
(
2
),
303
318
(
2009
).
18.
D.E.
Kvasov
, and
Ya.D.
Sergeyev
,
Journal of Computational and Applied Mathematics
236
(
16
),
4042
4054
(
2012
).
19.
Ya.D.
Sergeyev
,
D.
Famularo
, and
P.
Pugliese
,
Journal of Global Optimization
21
(
3
),
317
341
(
2001
).
20.
D.E.
Kvasov
,
C.
Pizzuti
, and
Ya.D.
Sergeyev
,
Numerische Mathematik
94
(
1
)
93
106
(
2003
).
21.
D.
Lera
, and
Ya.D.
Sergeyev
,
SIAM Journal on Optimization
23
(
1
),
508
529
(
2013
).
22.
Ya.D
Sergeyev
,
R.G.
Strongin
, and
D.
Lera
,
Introduction to Global Optimization Exploiting Space-Filling Curves
,
Springer
,
New York
,
2013
.
23.
R.G.
Strongin
,
Numerical Methods in Multiextremal Problems
,
Nauka
,
Moscow
. (
In Russian
),
1978
.
24.
R.G.
Strongin
,
Journal of Global Optimization
2
,
357
378
(
1992
).
25.
D.
Lera
, and
Ya.D.
Sergeyev
,
Journal of Global Optimization
48
(
1
),
99
112
(
2010
).
26.
D.
Lera
, and
Ya.D.
Sergeyev
,
Applied Numerical Mathematics
60
(
1-2
),
115
129
(
2010
).
27.
R.G.
Strongin
, and
Ya.D.
Sergeyev
,
Parallel Computing
18
,
1259
1273
(
1992
).
28.
D.
Lera
, and
Ya.D.
Sergeyev
,
Communications in Nonlinear Science and Numerical Simulation
,
23
,
328
342
(
2015
).
29.
M.J.
Gablonsky
, and
C.T.
Kelley
,
Journal of Global Optimization
,
21
,
27
37
(
2001
).
30.
M.
Gaviano
,
D.E.
Kvasov
,
D.
Lera
, and
Ya.D.
Sergeyev
,
ACM Transactions on Mathematical Software
,
29
(
4
),
469
480
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.