An optimization problem is considered where the objective function f (x) is black-box and multiextremal and the information about its gradient ∇ f (x) is available during the search. It is supposed that ∇ f (x) satisfies the Lipschitz condition over the admissible hyperinterval with an unknown Lipschitz constant K. Some numerical Lipschitz global optimization methods based on geometric ideas with the usage of different estimates of the Lipschitz constant K are presented. Results of their systematic experimental investigation are reported and commented on.

1.
Y. G.
Evtushenko
, and
M. A.
Posypkin
,
Optim. Lett.
7
,
819
829
(
2013
).
2.
C. A.
Floudas
, and
P. M.
Pardalos
, editors,
Encyclopedia of Optimization
(
6
Volumes),
Springer
,
2009
, 2nd edn.
3.
J. M.
Fowkes
,
N. I. M.
Gould
, and
C. L.
Farmer
,
J. Global Optim.
56
,
1791
1815
(
2013
).
4.
V. P.
Gergel
,
J. Global Optim.
10
,
257
281
(
1997
).
5.
D. E.
Kvasov
, and
Y. D.
Sergeyev
,
J. Comput. Appl. Math.
236
,
4042
4054
(
2012
).
6.
R.
Paulavičius
, and
J.
Žilinskas
,
Simplicial Global Optimization
,
Springer
,
New York
,
2014
.
7.
Y. D.
Sergeyev
, and
D. E.
Kvasov
,
Diagonal Global Optimization Methods
,
FizMatLit
,
Moscow
,
2008
, in Russian.
8.
Y. D.
Sergeyev
, and
D. E.
Kvasov
, “Lipschitz global optimization,” in
Wiley Encyclopedia of Operations Research and Management Science
,
Wiley
,
New York
,
2011
, vol.
4
, pp.
2812
2828
.
9.
Y. D.
Sergeyev
, and
D. E.
Kvasov
,
Commun. Nonlinear Sci. Numer. Simulat.
21
,
99
111
(
2015
).
10.
Y. D.
Sergeyev
,
R. G.
Strongin
, and
D.
Lera
,
Introduction to Global Optimization Exploiting Space-Filling Curves
,
Springer
,
New York
,
2013
.
11.
R. G.
Strongin
, and
Y. D.
Sergeyev
,
Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms
,
Kluwer Academic Publishers
,
Dordrecht
,
2000
.
12.
W.
Baritompa
, and
A.
Cutler
,
J. Global Optim.
4
,
329
341
(
1994
).
13.
L.
Breiman
, and
A.
Cutler
,
Math. Program.
58
,
179
199
(
1993
).
14.
S. Y.
Gorodetsky
,
Vestnik of Lobachevsky State University of Nizhni Novgorod
1
,
144
155
(
2012
), in Russian.
15.
D. E.
Kvasov
, and
Y. D.
Sergeyev
,
Numer. Algebra Contr. Optim.
2
,
69
90
(
2012
).
16.
D.
Lera
, and
Y. D.
Sergeyev
,
SIAM J. Optim.
23
,
508
529
(
2013
).
17.
Y. D.
Sergeyev
,
Math. Program.
81
,
127
146
(
1998
).
18.
D. E.
Kvasov
, and
Y. D.
Sergeyev
,
Optim. Lett.
3
,
303
318
(
2009
).
19.
D.
Lera
, and
Y. D.
Sergeyev
,
Commun. Nonlinear Sci. Numer. Simulat.
23
,
328
342
(
2015
).
20.
J. D.
Pintér
,
Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications)
,
Kluwer Academic Publishers
,
Dordrecht
,
1996
.
21.
Y. D.
Sergeyev
, and
D. E.
Kvasov
,
SIAM J. Optim.
16
,
910
937
(
2006
).
22.
Y. D.
Sergeyev
,
J. Optim. Theory Appl.
107
,
145
168
(
2000
).
23.
D. E.
Kvasov
, and
Y. D.
Sergeyev
,
Automat. Remote Contr.
74
,
1435
1448
(
2013
).
24.
D.
Di Serafino
,
G.
Liuzzi
,
V.
Piccialli
,
F.
Riccio
, and
G.
Toraldo
,
J. Optim. Theory Appl.
151
,
175
190
(
2011
).
25.
R.
Paulavičius
,
J.
Žilinskas
, and
A.
Grothey
,
Optim. Methods Softw.
26
,
487
498
(
2011
).
26.
R.
Battiti
,
M.
Brunato
, and
F.
Mascia
,
Reactive Search and Intelligent Optimization
,
Springer
,
New York
,
2009
.
27.
K.
Barkalov
,
A.
Polovinkin
,
I.
Meyerov
,
S.
Sidorov
, and
N.
Zolotykh
, “SVM regression parameters optimization using parallel global search algorithm,” in
Parallel Computing Technologies
,
Springer
,
2013
, vol.
7979
of LNCS, pp.
154
166
.
28.
R.
Paulavičius
,
Y. D.
Sergeyev
,
D. E.
Kvasov
, and
J.
Žilinskas
,
J. Global Optim.
59
,
545
567
(
2014
).
29.
A. A.
Zhigljavsky
, and
A.
Žilinskas
,
Stochastic Global Optimization
,
Springer
,
New York
,
2008
.
30.
J. W.
Gillard
, and
A. A.
Zhigljavsky
,
J. Global Optim.
57
,
733
751
(
2013
).
31.
A.
Žilinskas
,
J. Global Optim.
48
,
173
182
(
2010
).
32.
Y.
Sergeyev
, and
D.
Kvasov
, “On deterministic diagonal methods for solving global optimization problems with Lipschitz gradients,” in
Optimization, Control, and Applications in the Information Age
,
Springer
,
2015
, vol.
130
of PROMS, pp.
319
337
.
33.
D. E.
Kvasov
,
C.
Pizzuti
, and
Y. D.
Sergeyev
,
Numer. Math.
94
,
93
106
(
2003
).
34.
Y. D.
Sergeyev
,
SIAM J. Optim.
5
,
858
870
(
1995
).
35.
Y. D.
Sergeyev
,
Comput. Math. Math. Phys.
35
,
705
717
(
1995
).
36.
D. E.
Kvasov
,
4OR – Quart. J. Oper. Res.
6
,
403
406
(
2008
).
37.
D. E.
Kvasov
, and
Y. D.
Sergeyev
,
Adv. Eng. Softw.
80
,
58
66
(
2015
).
38.
J. M.
Calvin
, and
A.
Žilinskas
,
Comp. Math. Appl.
50
,
157
169
(
2005
).
39.
V. P.
Gergel
,
Comput. Math. Math. Phys.
36
,
729
742
(
1996
).
40.
V. P.
Gergel
, and
Y. D.
Sergeyev
,
Comput. Math. Appl.
37
,
163
179
(
1999
).
41.
Y. D.
Sergeyev
, and
V. A.
Grishagin
,
J. Optim. Theory Appl.
80
,
513
536
(
1994
).
42.
Y. D.
Sergeyev
, and
V. A.
Grishagin
,
J. Comput. Anal. Appl.
3
,
123
145
(
2001
).
43.
Y. D.
Sergeyev
,
D.
Famularo
, and
P.
Pugliese
,
J. Global Optim.
21
,
317
341
(
2001
).
44.
R. G.
Strongin
, and
Y. D.
Sergeyev
,
Parallel Comput.
18
,
1259
1273
(
1992
).
45.
V. A.
Grishagin
, and
R. G.
Strongin
,
Eng. Cybernetics
22
,
117
122
(
1984
).
46.
M.
Gaviano
,
D.
Lera
,
D. E.
Kvasov
, and
Y. D.
Sergeyev
,
ACM Trans. Math. Software
29
,
469
480
(
2003
).
This content is only available via PDF.
You do not currently have access to this content.