In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. Unlike many other methods described in the literature the family of algorithms we propose has the property of guaranteed convergence.

1.
F.
Andersson
and
M.
Carlsson
. arXiv:1107.4055 (
2011
).
2.
J. A.
Cadzow
.
IEEE Trans. on Acoust., Speech, Signal Processing
36
,
1070
1087
(
1988
).
3.
J. M.
Calvin
and
A.
Žilinskas
.
Computers and Mathematics with Applications
50
(
1
),
157
169
(
2005
).
4.
M. T.
Chu
,
R. E.
Funderlic
, and
R. J.
Plemmons
.
Linear algebra and its Applications
366
,
157
172
(
2003
).
5.
J.
Gillard
.
Statistics and Its Interface
3
(
3
),
335
343
(
2010
).
6.
J. W.
Gillard
and
A. A.
Zhigljavsky
.
Software for alternating projections with backtracking and randomization
, http://www.jonathangillard.co.uk (
2012
).
7.
J. W.
Gillard
and
A. A.
Zhigljavsky
.
Communications in Nonlinear Science and Numerical Simulation
21
(
1
),
70
88
(
2015
).
8.
N.
Golyandina
.
Statistics and Its Interface
3
,
259
279
(
2010
).
9.
N.
Golyandina
and
A.
Shlemov
.
Statistics and Its Interface
8
(
3
),
277
294
(
2015
).
10.
D. E.
Kvasov
and
Y. D.
Sergeyev
.
Journal of Computational and Applied Mathematics
236
(
16
),
4042
4054
(
2012
).
11.
D. E.
Kvasov
and
Y. D.
Sergeyev
.
Automation and Remote Control
74
(
9
),
1435
1448
(
2013
).
12.
D. E.
Kvasov
and
Y. D.
Sergeyev
.
Advances in Engineering Software
80
,
58
66
(
2015
).
13.
P.
Lemmerling
,
N.
Mastronardi
, and
S.
Van Huffel
.
Linear Algebra Appl.
366
,
295
315
(
2003
).
14.
D.
Lera
and
Y. D.
Sergeyev
.
Applied Numerical Mathematics
60
,
115
129
(
2010
).
15.
D.
Lera
and
Y. D.
Sergeyev
.
Communications in Nonlinear Science and Numerical Simulation
23
,
328
342
(
2015
).
16.
I.
Markovsky
,
J. C.
Willems
,
S.
Van Huffel
,
B.
De Moor
, and
R.
Pintelon
.
IEEE Trans. Auto. Cont.
50
(
10
),
1490
1500
(
2005
).
17.
R.
Paulavičius
,
Y. D.
Sergeyev
,
D. E.
Kvasov
,
J.
Žilinskas
.
Journal of Global Optimization
59
(
2-3
),
545
567
(
2014
).
18.
A.
Pruessner
and
D. P.
O’Leary
.
SIAM J. Matrix Anal. Appl.
24
(
4
),
1018
1037
(
2003
).
19.
Y. D.
Sergeyev
.
Journal of Optimization Theory and Applications
.
107
(
1
),
145
168
(
2000
).
20.
Y. D.
Sergeyev
and
D. E.
Kvasov
.
Lipschitz global optimization
.
Wiley Encyclopedia of Oper. Res. and Man. Sci.
,
2011
.
21.
R. G.
Strongin
and
Y. D.
Sergeyev
.
Parallel Computing
.
18
,
1259
1273
(
1992
).
22.
R. G.
Strongin
and
Y. D.
Sergeyev
.
Global optimization with non-convex constraints: Sequential and parallel algorithms
.
Springer
,
New York
,
2013
.
23.
A.
Yeredor
.
Linear Algebra Appl.
391
,
261
286
(
2004
).
24.
A.
Zhigljavsky
and
A.
Žilinskas
.
Stochastic Global Optimization
.
Springer
,
New York
,
2007
.
25.
A.
Žilinskas
.
Journal of Global Optimization
48
(
1
),
173
182
(
2010
).
This content is only available via PDF.
You do not currently have access to this content.