In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. Unlike many other methods described in the literature the family of algorithms we propose has the property of guaranteed convergence.
REFERENCES
1.
2.
J. A.
Cadzow
. IEEE Trans. on Acoust., Speech, Signal Processing
36
, 1070
–1087
(1988
).3.
J. M.
Calvin
and A.
Žilinskas
. Computers and Mathematics with Applications
50
(1
), 157
–169
(2005
).4.
M. T.
Chu
, R. E.
Funderlic
, and R. J.
Plemmons
. Linear algebra and its Applications
366
, 157
–172
(2003
).5.
J.
Gillard
. Statistics and Its Interface
3
(3
), 335
–343
(2010
).6.
J. W.
Gillard
and A. A.
Zhigljavsky
. Software for alternating projections with backtracking and randomization
, http://www.jonathangillard.co.uk (2012
).7.
J. W.
Gillard
and A. A.
Zhigljavsky
. Communications in Nonlinear Science and Numerical Simulation
21
(1
), 70
–88
(2015
).8.
N.
Golyandina
. Statistics and Its Interface
3
, 259
–279
(2010
).9.
N.
Golyandina
and A.
Shlemov
. Statistics and Its Interface
8
(3
), 277
–294
(2015
).10.
D. E.
Kvasov
and Y. D.
Sergeyev
. Journal of Computational and Applied Mathematics
236
(16
), 4042
–4054
(2012
).11.
D. E.
Kvasov
and Y. D.
Sergeyev
. Automation and Remote Control
74
(9
), 1435
–1448
(2013
).12.
D. E.
Kvasov
and Y. D.
Sergeyev
. Advances in Engineering Software
80
, 58
–66
(2015
).13.
P.
Lemmerling
, N.
Mastronardi
, and S.
Van Huffel
. Linear Algebra Appl.
366
, 295
–315
(2003
).14.
D.
Lera
and Y. D.
Sergeyev
. Applied Numerical Mathematics
60
, 115
–129
(2010
).15.
D.
Lera
and Y. D.
Sergeyev
. Communications in Nonlinear Science and Numerical Simulation
23
, 328
–342
(2015
).16.
I.
Markovsky
, J. C.
Willems
, S.
Van Huffel
, B.
De Moor
, and R.
Pintelon
. IEEE Trans. Auto. Cont.
50
(10
), 1490
–1500
(2005
).17.
R.
Paulavičius
, Y. D.
Sergeyev
, D. E.
Kvasov
, J.
Žilinskas
. Journal of Global Optimization
59
(2-3
), 545
–567
(2014
).18.
A.
Pruessner
and D. P.
O’Leary
. SIAM J. Matrix Anal. Appl.
24
(4
), 1018
–1037
(2003
).19.
Y. D.
Sergeyev
. Journal of Optimization Theory and Applications
. 107
(1
), 145
–168
(2000
).20.
Y. D.
Sergeyev
and D. E.
Kvasov
. Lipschitz global optimization
. Wiley Encyclopedia of Oper. Res. and Man. Sci.
, 2011
.21.
R. G.
Strongin
and Y. D.
Sergeyev
. Parallel Computing
. 18
, 1259
–1273
(1992
).22.
R. G.
Strongin
and Y. D.
Sergeyev
. Global optimization with non-convex constraints: Sequential and parallel algorithms
. Springer
, New York
, 2013
.23.
A.
Yeredor
. Linear Algebra Appl.
391
, 261
–286
(2004
).24.
A.
Zhigljavsky
and A.
Žilinskas
. Stochastic Global Optimization
. Springer
, New York
, 2007
.25.
A.
Žilinskas
. Journal of Global Optimization
48
(1
), 173
–182
(2010
).
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.