Some problems of continuum mechanics, as the analysis of crack formation in the cohesive zone modelling, require (at least) two-scale numerical approach to finite element (or volume, difference, etc.) computations: i) at the macro-scale for a whole (nearly elastic, partially damaged) body and ii) at the micro-scale near the crack (a new interior surface). The paper presents an always convergent procedure handling overlapping two-scale meshes for such model problems, open to generalizations in many directions.

1.
S. C.
Brenner
and
L. Ridgway
Scott
,
The Mathematical Theory of Finite Element Methods
.
Springer
,
New York
,
2002
.
2.
A.
Cianchi
and
V. G.
Maz’ya
,
Sobolev inequalities in arbitrary domains
. Preprint, available at www.wpi.liu.se/∼vlama82/pdf/em_Arbitrary_domain15.pdf,
42
pp.
3.
F.
Confalonieri
,
A.
Ghisi
,
G.
Cocchetti
and
A.
Corigliano
,
A domain decomposition approach for the simulation of fracture phenomena in polycrystalline microsystems
.
Computational Methods in Applied Mechanics and Engineering
277
(
2014
),
180
218
.
4.
Ya.
Efendiev
and
T. Y.
Hou
,
Multiscale Finite Element Methods
.
Springer
,
New York
,
2009
.
5.
R.
Glowinski
,
J.
He
,
A.
Lozinski
,
J.
Rappaz
and
J.
Wagner
,
Finite element approximation of multi-scale elliptic problems using patches of elements
.
Numerische Mathematik
101
(
2005
),
663
688
.
6.
R.
Jiang
,
A.
Kauranen
and
P.
Koskela
,
Solvability of the divergence equation implies John via Poincaré inequality
Nonlinear Analysis
101
(
2014
),
80
88
.
7.
V.
Kozák
and
Z.
Chlup
,
Modelling of fibre-matrix interface of brittle matrix long fibre composite by application of cohesive zone method
.
Key Engineering Materials
465
(
2011
),
231
234
.
8.
V.
Kozák
and
Z.
Chlup
,
Microindentation test modelling in the silicon nitride ceramics by application of the cohesive zone approach
.
Key Engineering Materials
627
(
2015
),
329
332
.
9.
A.
Ženíšek
,
Sobolev Spaces and Their Applications in the Finite Element Method
.
Brno University of Technology
,
2005
.
10.
A.
Ženíšek
,
Finite element variational crimes in the case of semiregular elements
.
Applications of Mathematics
41
(
1996
),
367
398
.
11.
N.
Moës
and
T.
Belytschko
,
Extended finite element method for cohesive crack growth
,
Engineering Fracture Mechanics
69
(
2002
),
813
833
.
12.
K.
Park
and
G. H.
Paulino
,
Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces
.
Applied Mechanics Reviews
64
(
2011
), 060802:
1
20
.
13.
T.
Roubíček
,
Nonlinear Partial Differential Equations with Applications
.
Birkhäuser
,
Basel
,
2005
.
14.
S. S.
Rudraraju
,
K.
Garikipati
,
A. M.
Waas
and
B. A.
Bednarcyk
,
On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites
.
NASA (National Aeronautics and Space Administration
),
2013
.
15.
J.
Sanders
and
M. A.
Puso
,
An embedded mesh method for treating overlapping finite element meshes
.
International Journal for Numerical Methods in Engineering
91
(
2012
),
289
305
.
16.
A.
Toseli
and
O.
Wildlund
,
Domain Decomposition Methods – Algorithms and Theory
.
Springer
,
New York
,
2005
.
17.
J.
Vala
,
Two-scale finite element techniques in engineering mechanics
.
Strojnícky časpois – Journal of Mechanical Engineering
3
(
2006
),
129
140
.
18.
J.
Vala
and
P.
Jarošová
,
Computational modelling of cohesive cracks in material structures
.
Proceedings of ICNAAM (International Conference on Numerical Analysis and Applied Mathematics)
in
Rhodes (Greece)
,
2015
,
4
pp., submitted.
19.
J.
Vala
and
V.
Kozák
,
Cohesive crack growth modelling in heterogeneous materials
.
Proceedings of COME (Continuum Mechanics)
in
Zakytnthos (Greece)
,
2015
,
8
pp., in print.
This content is only available via PDF.
You do not currently have access to this content.