Analysis of crack formation, considered as the creation of new surfaces in a material sample due to its microstructure, leads to nontrivial physical, mathematical and computational difficulties even in the rather simple case of quasistatic cohesive zone modelling inside the linear elastic theory. However, quantitative results from such evaluations are required in practice for the development and design of advanced materials, structures and technologies. Although most available software tools apply ad hoc computational predictions, this paper presents the proper formulation of such model problem, including its verification, and sketches the more-scale construction of finite-dimensional approximation of solutions, utilizing the finite element or similar techniques, together with references to original simulations results from engineering practice.

1.
G. I.
Barenblatt
,
The formation of equilibrium cracks during brittle fracture
.
PMM (Prikladnaya Matematika i Mekhanika)
3
(
1959
),
434
444
.
2.
A.
Cianchi
and
V. G.
Maz’ya
,
Sobolev inequalities in arbitrary domains
. Preprint, available at www.wpi.liu.se/∼vlama82/pdf/em_Arbitrary_domain15.pdf,
42
pp.
3.
B.
Chong
,
Simulation of crack growth using cohesive crack method
.
KSCE Journal of Civil Engineering
14
(
2010
),
765
772
.
4.
M.
Davydova
and
S.
Uvarov
,
Fractal statistics of brittle fragmentation
.
Frattura ed Integrità Strutturale
24
(
2013
),
60
68
.
5.
G.
Del Piero
and
D. R.
Owen
,
Structured deformations of continua
.
Archive for Rational Mechanics and Analysis
124
(
1993
),
99
155
.
6.
D. S.
Dugdale
,
Yielding of steel sheets containing slits
.
Journal of the Mechanics and Physics of Solids
8
(
1960
),
100
104
.
7.
Ya.
Efendiev
and
T. Y.
Hou
,
Multiscale Finite Element Methods
.
Springer
,
New York
,
2009
.
8.
M.
François
and
G.
Royer-Carfagni
,
Structured deformation of damaged continua with cohesive-frictional sliding rough fractures
.
European Journal of Mechanics / A Solids
24
(
2005
),
644
660
.
9.
S.
Fučík
and
A.
Kufner
,
Nonlinear Differential Equations
.
Elsevier
,
Amsterdam
,
1980
.
10.
R.
Glowinski
,
J.
He
,
A.
Lozinski
,
J.
Rappaz
and
J.
Wagner
,
Finite element approximation of multi-scale elliptic problems using patches of elements
.
Numerische Mathematik
101
(
2005
),
663
688
.
11.
A. A.
Griffith
,
The phenomena of rupture and flow in solids
.
Philosophical Transactions of the Royal Society of London A
221
(
1921
),
163
198
.
12.
G. R.
Irwin
,
Analysis of stresses and strains near the end of a crack transversing the plate
.
Journal of Applied Mechanics
24
(
1957
),
361
364
.
13.
R.
Jiang
,
A.
Kauranen
and
P.
Koskela
,
Solvability of the divergence equation implies John via Poincaré inequality
Nonlinear Analysis
101
(
2014
),
80
88
.
14.
V.
Kozák
and
Z.
Chlup
,
Modelling of fibre-matrix interface of brittle matrix long fibre composite by application of cohesive zone method
.
Key Engineering Materials
465
(
2011
),
231
234
.
15.
S.
May
,
J.
Vignollet
, and
R.
de Borst
,
A numerical assessment of phase-field models for brittle and cohesive fracture: Γ-convergence and stress oscillations
.
European Journal of Mechanics / A Solids
, to appear (
2015
),
27
pp. (doi:).
16.
N.
Moës
and
T.
Belytschko
,
Extended finite element method for cohesive crack growth
,
Engineering Fracture Mechanics
69
(
2002
),
813
833
.
17.
B.
Muha
,
A note on the trace theorem for domains which are locally subgraph of a Hölder continuous function
.
Networks and heterogeneous media
9
(
2014
),
191
196
.
18.
K.
Park
and
G. H.
Paulino
,
Cohesive zone models: A critical review of traction-separation relationships across fracture surfaces
.
Applied Mechanics Reviews
64
(
2011
), 060802:
1
20
.
19.
T.
Roubíček
,
Nonlinear Partial Differential Equations with Applications
.
Birkhäuser
,
Basel
,
2005
.
20.
S. S.
Rudraraju
,
K.
Garikipati
,
A. M.
Waas
and
B. A.
Bednarcyk
,
On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites
.
NASA (National Aeronautics and Space Administration
),
2013
.
21.
Z.
Shabir
,
E.
Van der Giessen
,
C. A.
Duarte
and
A.
Simone
,
The role of cohesive properties on intergranular crack propagation in brittle polycrystals
.
Modelling and Simulation in Materials Science and Engineering
19
(
2011
), 035006:
1
21
.
22.
C.
Shet
and
N.
Chandra
,
Analysis of energy balance when using cohesive zone models to simulate fracture process
.
ASME Journal of Engineering Materials and Technology
124
(
2002
),
440
450
.
23.
A.
Toselli
and
O.
Widlund
,
Domain Decomposition Methods – Algorithms and Theory
.
Springer
,
Berlin
,
2005
.
24.
A.
Yavari
,
Generalization of Barenblatt’s cohesive fracture theory for fractal cracks
.
Fractals-Complex Geometry Patterns and Scaling in Nature and Society
10
(
2002
),
189
198
.
25.
J.
Vala
,
Two-scale finite element techniques in engineering mechanics
.
Strojnícky časpois – Journal of Mechanical Engineering
3
(
2006
),
129
140
.
26.
J.
Vala
and
L.
Hobst
,
Identification of structural parameters of metal fibre concrete using magnetic approach
.
Key Engineering Materials
592–593 (
2013
),
157
160
.
27.
J.
Vala
and
V.
Kozák
,
Cohesive crack growth modelling in heterogeneous materials
.
Proceedings of COME (Continuum Mechanics)
in
Zakytnthos (Greece
),
2015
,
8
pp., in print.
28.
C. V.
Verhoosel1
,
J. J. C.
Remmers
,
M. A.
Gutiérrez
and
R.
de Borst
,
Computational homogenisation for adhesive and cohesive failure in quasi-brittle solids
.
International Journal for Numerical Methods in Engineering
83
(
2010
),
1155
1179
.
29.
J. R.
Willis
,
A comparison of the fracture criteria of Griffith and Barenblatt
.
Journal of Mechanics and Physics of Solids
15
(
1967
),
151
162
.
30.
M. P.
Wnuk
and
A.
Yavari
,
A discrete cohesive model for fractal cracks
.
Engineering Fracture Mechanics
76
(
2009
),
548
559
.
This content is only available via PDF.
You do not currently have access to this content.