We obtain results on nonexistence of nontrivial nonnegative solutions for some elliptic inequalities with functional parameters involving the p(x)–Laplacian operator. The proof is based on the test function method.

1.
L.
Diening
,
P.
Harjulehto
,
P.
Hästö
and
M.
Růžička
,
Lebesgue and Sobolev Spaces with Variable Exponents
(
Springer Verlag
,
Berlin
,
2011
).
2.
X.
Fan
,
Math. Nachr.
284
,
1435
âĂŞ-
1445
(
2011
).
3.
L.
Montoro
,
B.
Sciunzi
and
L.
Squassina
,
Adv. Nonlinear Anal.
2
,
43
âĂŞ-
64
(
2013
).
4.
Yu.
Alkhutov
and
V.
Zhikov
,
Sbornik: Mathematics
205
,
307
318
(
2014
).
5.
L.
Wang
,
Journal of East China Normal University (Natural Sc.)
1
,
84
93
(
2009
).
6.
J. P.
Pinasco
,
Nonl. Anal.: TMA
71
,
1094
–âĂŞ
1099
(
2009
).
7.
E.
Mitidieri
and
S.
Pohozaev
,
Proceedings of Steklov Math. Inst.
234
,
1
383
(
2003
).
8.
E.
Galakhov
and
O.
Salieva
,
Journ. Math. Anal. and Appl.
408
,
102
113
(
2013
).
9.
E.
Galakhov
and
O.
Salieva
, “
Blow-up for nonlinear inequalities with singularities on unbounded sets
,” in
Current Trends in Analysis and Its Applications
,
Proceedings of the IXth ISAAC Congress
, edited by
V.
Mityushev
and
M.
Ruzhansky
(
Birkhäuser, Basel
,
2015
), pp.
299
305
.
10.
E.
Galakhov
,
O.
Salieva
and
L.
Uvarova
,
Electronic Journal of Differential Equations
, No.
216
,
1
12
(
2014
).
11.
L.
Diening
, “
Theoretical and numerical results for electrorheological fluids
,” Ph.D. thesis,
University of Freiburg im Breslau
,
Germany
(
2002
).
12.
T. C.
Halsey
,
Sciences
258
(
5083
),
761
âĂŞ-
766
(
1992
).
13.
M.
Růžička
, Electrorheological Fluids:
Modeling and Mathematical Theory
(
Springer-Verlag
,
Berlin
,
2002
).
This content is only available via PDF.
You do not currently have access to this content.