In this paper it is discussed and briefly experimentally investigated the performance of multi-swarm PSO with super-sized swarms. The selection of proper population size is crucial for successful PSO using. This work follows previous promising research.
REFERENCES
1.
Kennedy
, J.
, Eberhart
, R.
: Particle swarm optimization
. In: IEEE International Conference on Neural Networks
, 1995
, pp. 1942
–1948
.2.
Kennedy
, J.
, Eberhart
, R.C.
, Shi
, Y.
: Swarm Intelligence
. Morgan Kaufmann Publishers
, (2001
).3.
Nickabadi
, A.
, Ebadzadeh
, M.M.
, Safabakhsh
, R.
: A novel particle swarm optimization algorithm with adaptive inertia weight
. Applied Soft Computing
11
(4
), 3658
–3670
(2011
).4.
Yuhui
, S.
, Eberhart
, R.
: A modified particle swarm optimizer
. In: IEEE World Congress on Computational Intelligence
., 4-9 May 1998
, pp. 69
–73
.5.
Pluhacek
, M.
; Senkerik
, R.
; Zelinka
, I.
,, ‘The Initial Study on the Potential of Super-Sized Swarm in PSO
’, in Advances in Intelligent Systems and Computing, Mendel 2015
, Volume 378
, 2015
, pp 127
–135
6.
Liang
, J.
, Suganthan
, P.N.
: Dynamic multi-swarm particle swarm optimizer
. In: Swarm Intelligence Symposium, 2005. SIS 2005
, pp. 124
–129
.7.
Liang
JJ
, Qu
B-Y.
, Suganthan
PN
, Hernández-Díaz
AG
(2013
) Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization
, Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University
, Singapore
8.
Kotyrba
, M.
Influence of Changes in Initial Conditions for the Simulation of Dynamic Systems In T. E.
Simos
and C.
Tsitouras
(eds.) AIP Conference Proceedings
. Volume 1648
, eid 550003, ISBN: 978-0-7354-1287-3., ISSN: , 2015
.
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.