We sketch out the use of the line integral as a tool to devise numerical methods suitable for conservative and, in particular, Hamiltonian problems. The monograph [3] presents the fundamental theory on line integral methods and this short note aims at exploring some aspects and results emerging from their study.
REFERENCES
1.
L.
Brugnano
, F.
Iavernaro
. Line Integral Methods which preserve all invariants of conservative problems
. J. Comput. Appl. Math.
236
(2012
) 3905
–3919
.2.
L.
Brugnano
, F.
Iavernaro
, D.
Trigiante
. Energy and QUadratic Invariants Preserving integrators based upon Gauss collocation formulae
. SIAM J. Numer. Anal.
50
, No. 6
(2012
) 2897
–2916
.3.
L.
Brugnano
, F.
Iavernaro
. Line Integral Methods for Conservative Problems
. Series: Monographs and Research Notes in Mathematics
. Chapman et al./CRC
, Boca Raton, FL
, 2015
. ISBN 9781482263848.4.
L.
Brugnano
, Y.
Sun
. Multiple invariants conserving Runge–Kutta type methods for Hamiltonian problems
. Numer. Algorithms
65
(2014
) 611
–632
.5.
K.
Feng
, M.
Quin
. Symplectic Geometric Algorithms for Hamiltonian Systems
. Springer, Zhejiang Publishing United Group Zhejiang Science and Technology Publishing House
, 2010
.6.
E.
Hairer
, C.
Lubich
, G.
Wanner
. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations
, Second ed., Springer
, Berlin
, 2006
.7.
B.
Leimkulher
, S.
Reich
. Simulating Hamiltonian Dynamics
. Cambridge University Press
, Cambridge
, 2004
.8.
J.M.
Sanz-Serna
, M.P.
Calvo
. Numerical Hamiltonian Problems
. Chapman & Hall
, London
, 1994
.9.
A.M.
Stuart
, A.R.
Humphries
. Dynamical systems and numerical analysis
. Cambridge Monographs on Applied and Computational Mathematics, 2. Cambridge University Press
, Cambridge
, 1996
.10.
Y.B.
Suris
. The problem of integrable discretization: Hamiltonian approach
. Progress in Mathematics, 219. Birkhäuser Verlag
, Basel
, 2003
.
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.