We sketch out the use of the line integral as a tool to devise numerical methods suitable for conservative and, in particular, Hamiltonian problems. The monograph [3] presents the fundamental theory on line integral methods and this short note aims at exploring some aspects and results emerging from their study.

1.
L.
Brugnano
,
F.
Iavernaro
.
Line Integral Methods which preserve all invariants of conservative problems
.
J. Comput. Appl. Math.
236
(
2012
)
3905
3919
.
2.
L.
Brugnano
,
F.
Iavernaro
,
D.
Trigiante
.
Energy and QUadratic Invariants Preserving integrators based upon Gauss collocation formulae
.
SIAM J. Numer. Anal.
50
, No.
6
(
2012
)
2897
2916
.
3.
L.
Brugnano
,
F.
Iavernaro
.
Line Integral Methods for Conservative Problems
. Series:
Monographs and Research Notes in Mathematics
.
Chapman et al./CRC
,
Boca Raton, FL
,
2015
. ISBN 9781482263848.
4.
L.
Brugnano
,
Y.
Sun
.
Multiple invariants conserving Runge–Kutta type methods for Hamiltonian problems
.
Numer. Algorithms
65
(
2014
)
611
632
.
5.
K.
Feng
,
M.
Quin
.
Symplectic Geometric Algorithms for Hamiltonian Systems
.
Springer, Zhejiang Publishing United Group Zhejiang Science and Technology Publishing House
,
2010
.
6.
E.
Hairer
,
C.
Lubich
,
G.
Wanner
.
Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations
, Second ed.,
Springer
,
Berlin
,
2006
.
7.
B.
Leimkulher
,
S.
Reich
.
Simulating Hamiltonian Dynamics
.
Cambridge University Press
,
Cambridge
,
2004
.
8.
J.M.
Sanz-Serna
,
M.P.
Calvo
.
Numerical Hamiltonian Problems
.
Chapman & Hall
,
London
,
1994
.
9.
A.M.
Stuart
,
A.R.
Humphries
.
Dynamical systems and numerical analysis
. Cambridge Monographs on Applied and Computational Mathematics, 2.
Cambridge University Press
,
Cambridge
,
1996
.
10.
Y.B.
Suris
.
The problem of integrable discretization: Hamiltonian approach
. Progress in Mathematics, 219.
Birkhäuser Verlag
,
Basel
,
2003
.
This content is only available via PDF.
You do not currently have access to this content.