We discuss a new approach for constructing polytope Lyapunov functions for continuous-time linear switching systems. The method we propose allows to decide the uniform stability of a switching system and to compute the Lyapunov exponent with an arbitrary precision. The method relies on the discretization of the system and provides - for any given discretization stepsize - a lower and an upper bound for the Lyapunov exponent. The efficiency of the new method is illustrated by numerical examples. For a more extensive discussion we remand the reader to [8].

1.
N.E.
Barabanov
,
Siberian Math. J.
29
,
521
530
(
1988
).
2.
F.
Blanchini
,
Automatica J. IFAC
31
,
451
461
(
1995
).
3.
F.
Blanchini
,
S.
Miani
,
Set-theoretic methods in control. Systems & Control: Foundations & Applications
.
Birkhäuser
,
2008
.
4.
M. A.
Berger
, and
Y.
Wang
,
Linear Algebra Appl.
5.
I.
Daubechies
, and
J.C.
Lagarias
,
Linear Algebra Appl.
166
,
21
27
(
1992
).
6.
L.
Elsner
,
Linear Algebra Appl.
220
,
151
159
(
1995
).
7.
N.
Guglielmi
, and
V.Yu.
Protasov
,
Found. Comput. Math.
13
,
37
97
(
2013
).
8.
N.
Guglielmi
,
L.
Laglia
and
V.Yu.
Protasov
,
Found. Comput. Math.
in press (
2015
).
9.
N.
Guglielmi
,
F.
Wirth
, and
M.
Zennaro
,
SIAM J. Matrix Anal. Appl.
27
,
721
743
(
2005
).
10.
R. M.
Jungers
,
The joint spectral radius: theory and applications, Lecture Notes in Control and Information Sciences
385
,
Springer-Verlag
,
2009
.
11.
V.I.
Opoitsev
,
Nauka, Moscow
(
1977
).
12.
V.Yu.
Protasov
,
Functional Anal. Appl.
44
,
230
233
(
2010
).
13.
G.C.
Rota
, and
G.
Strang
,
Kon. Nederl. Acad. Wet. Proc.
63
,
379
381
(
1960
).
This content is only available via PDF.
You do not currently have access to this content.