We discuss a new approach for constructing polytope Lyapunov functions for continuous-time linear switching systems. The method we propose allows to decide the uniform stability of a switching system and to compute the Lyapunov exponent with an arbitrary precision. The method relies on the discretization of the system and provides - for any given discretization stepsize - a lower and an upper bound for the Lyapunov exponent. The efficiency of the new method is illustrated by numerical examples. For a more extensive discussion we remand the reader to [8].
REFERENCES
1.
N.E.
Barabanov
, Siberian Math. J.
29
, 521
–530
(1988
).2.
F.
Blanchini
, Automatica J. IFAC
31
, 451
–461
(1995
).3.
F.
Blanchini
, S.
Miani
, Set-theoretic methods in control. Systems & Control: Foundations & Applications
. Birkhäuser
, 2008
.4.
M. A.
Berger
, and Y.
Wang
, Linear Algebra Appl.
5.
I.
Daubechies
, and J.C.
Lagarias
, Linear Algebra Appl.
166
, 21
–27
(1992
).6.
L.
Elsner
, Linear Algebra Appl.
220
, 151
–159
(1995
).7.
N.
Guglielmi
, and V.Yu.
Protasov
, Found. Comput. Math.
13
, 37
–97
(2013
).8.
N.
Guglielmi
, L.
Laglia
and V.Yu.
Protasov
, Found. Comput. Math.
in press (2015
).9.
N.
Guglielmi
, F.
Wirth
, and M.
Zennaro
, SIAM J. Matrix Anal. Appl.
27
, 721
–743
(2005
).10.
R. M.
Jungers
, The joint spectral radius: theory and applications, Lecture Notes in Control and Information Sciences
385
, Springer-Verlag
, 2009
.11.
V.I.
Opoitsev
, Nauka, Moscow
(1977
).12.
V.Yu.
Protasov
, Functional Anal. Appl.
44
, 230
–233
(2010
).13.
This content is only available via PDF.
© 2016 Author(s).
2016
Author(s)
You do not currently have access to this content.