Incidence of earthquake disaster has caused casualties and material in considerable amounts. This research has purposes to predictability the return period of earthquake with the identification of the mechanism of earthquake which in case study area in Sumatra. To predict earthquakes which training data of the historical earthquake is using ANFIS technique. In this technique the historical data set compiled into intervals of earthquake occurrence daily average in a year. Output to be obtained is a model return period earthquake events daily average in a year. Return period earthquake occurrence models that have been learning by ANFIS, then performed the polarity recognition through image recognition techniques on the focal sphere using principal component analysis PCA method. The results, model predicted a return period earthquake events for the average monthly return period showed a correlation coefficient 0.014562.

1.
Sumarwan
R
, dan
Permadhi
,
Y, F.
,
Aplikasi Metode ANFIS untuk Prediksi Curah Hujan di Pulau Jawa Bagian Barat
.
2010
.
2.
USGS
.
Moment Tensor Solutions
. http;/www.iris.edu/hq/programs/education-and-outreach/animations/25, (Diakses tanggal 12 Desember 
2013
).
3.
Jang
JSR
,
Tsai
Sun C.
,
Mizutani
E.
Neuro-Fuzzy and Soft Computing, a Computational Approach to Learning and Machine Intelligence
,
Prentice Hall
,
Upper Saddle River, NJ
07458
.
1997
.
4.
Kusumadewi
,
Sri.
, and
Hartati
,
Sri
.,
Neuro Fuzzy Integrasi sistem Fuzzy dan Jaringan Syaraf
.
Graha Ilmu
,
Yogyakarta
,
2010
.
5.
Adrian
CP
dan
Syamsul
A
.
Perancangan Model Adaptive Neuro Fuzzy Inference System Untuk Memprediksi Cuaca Maritim, Jurusan Teknik Fisika
,
Fakultas Teknologi Industri, Institut Teknologi Sepuluh
November. 2008
.
6.
Elohansen
P.
Estimasi Kejadian Gempabumi Zona Tumbukkan Maluku Berbasis ANFIS Termodifikasi. Program Studi Fisika, FMIPA, Universitas Negeri Papua
,
ISTECH
Vol.
4
, No.
1
, Hal :
16 22. Februari 2012
.
7.
Nazori
.
Bahan Pengajaran Kuliah Teknik Komputasi, Implementasi dengan Matlab
.
Magister Komputer Universitas Budi Luhur
.
2011
.
8.
ANSS. Advanced National Seismic System-Focal Mechanism
. http;/earthquake.usgs.gov/monitoring/?source=sitenav, (Diakses tanggal 12 Desember 2013).
9.
Sugiyono
,
Metode Penelitian Kuantitatif, Kualitatif and R D.
,
Alfabeta
,
Bandung
.
2012
.
10.
Narimawati
.
Metodologi Penelitian Kualitatif dan Kuantitatif
,
Teori dan Aplikasi
.
Bandung. Agung Media
.
2008
.
11.
Goupeng
Z.
Data Analysis With Fuzzy Inference System. In Computational Intelligence:Method and Application
.
Singapore: School of Computer Engineering, Nanyang Technological University
,
2006
.
12.
Nugraha
,
A.D.
Analisis Data Gempa Bumi Indonesia dengan Menggunakan Metode Adaptive Neuro Fuzzy Inferrence System (ANFIS)
,
Tugas Akhir, Dept. Geofisika dan Meteorologi, ITB
.
13.
Romdhani
.
Face Recognition Using Principal Component Analysis
, http;//eeapp.elec.gla.ac.uk/romdhani/pca-doc/pca-doc-toc.htm.
1997
. (accessed on 12 December 2014).
14.
Farida
.
Pengklasifikasian Gender Dengan Menentukan titik-titik penting pada Sistem Pengenalan Wajah Menggunakan Matlab 6.5
,
Universitas Gunadharma
,
2012
.
This content is only available via PDF.
You do not currently have access to this content.