Nano ferrites with the general chemical formula Ni0.5MgxCu1-x Fe2O4 were synthesized by chemical route. They were characterized by x-ray diffraction by powder method. The diffraction patterns confirm the formation of single phase ferrites. The particle size is calculated by Scherrer formula which varies between 20nm to 60nm. DC resistivity was measured as a function of composition from room temperature to 700o C by two probe method. These ferrites show higher resistivity than those synthesized by ceramic method, due to control over composition and morphology. This leads to the elimination of domain wall resonance so that the materials can work at higher frequencies.

AC resistivity was measured as a function of frequency at room temperature. Dielectric dispersion obeys Maxwell - Wagner model, in accordance with Koop’s phenomenological theory. The variation of loss angle follows the variation of ac resistivity with frequency and composition. The change in ac conductivity with frequency obeys the power law σa = B.ωn. Such a behavior suggests that conductivity is due to polarons in all the samples.

1.
P. F.
wang
;
S. C.
Ng
,
L. M.
Gan
,
Mater sc. letter
30
,
217
(
1997
)
2.
T
Yamaguchi
;
M
Abe
,
ICF.6. Japan society. power. power metallurgy
,
Japan
1992
3.
E. J.W
Verwey
,
E.C
Hilman
,
Chem.phys.
15
,
174
(
1947
)
4.
S.A
Morisson
,
C.L
Chil
,
Carpenter
E. E.
Clavins
,
R
Swaminathan
,
M C
Henry
M.E
,
V.G.
Harris
Appl.phy.
6392
95
(
2004
)
5.
R.
Lebourgeois
,
J. P.
Ganne
,
B.
lloet
,
Physics.IV France.
7
.
suppl.cl
:
105
(
1997
)
6.
K. H.
Lee
,
D. H.
Cho
,
S. S.
Jeung
,
Mater.sc.lett.
16
,
83
(
1997
)
7.
P. A.
Lessing
,
Ceram Bull.
68
,
1002
(
1989
)
8.
R. S.
Totagi
,
R. B.
Pujar
,
S. B.
Koujalagi
,
Der.pharam.chemica.
6
,
272
(
2014
)
9.
P. B. C.
Rao
,
S. P.
Shetty
,
Engineering.sc.Technology
. vol.
2
. (
8
)
3351
54
(
2010
)
10.
R. B.
Pujar
,
S. S.
Bellad
,
B. K.
Chougule
,
Mater.sc.lett.
18
,
1083
(
1999
)
11.
A. P.
Kamar
,
V. V.
Klivshin
,
Bull.Acd.sci. (U.S.S R)
18
,
96
(
1954
)
12.
R. P.
Mahajan
,
K. K.
Patankar
,
M. N.
Barangel
,
S. C.
Choudari
,
A. K.
Ghatake
,
S. A.
Patil
,
Pure.Appl.phys.
38
,
615
20
(
2000
)
13.
J.
Baszsynski
,
Acta.phys.polym.
35
(
1969
)
631
14.
V. R. K.
Murthy
,
J.
Sobhanadri
,
Phys.status.solidi (A)
.
38
(
1977
)
647
15.
E. J. W.
Verwey
,
J. H.
de Boer
,
Red.Trav.chim.phys.Bas
55
(
1936
)
531
16.
P. A.
Jadhav
,
R. S.
Devan
,
Y. D.
Kolekar
,
B. K.
Chougule
,
Phys.chem.solids.
70
(
2009
)
396
400
17.
S.
Radhakrishnan
,
K. V. S.
Badarinath
,
Mater.sc.lett.
3
(
1984
)
867
18.
E. Veena
Gopalan
,
K. A.
Malini
,
S.
Sarakaran
,
D. Sakti
kumar
,
Yashuhiko
,
Yoshida
,
M. R.
Anantaraman
,
Phys.D: Appl.phys.
41
(
2008
)
185005
19.
L. T.
Rabinkin
,
Z. I.
Novikova
,
Acad. Nauk USSR minks c
(
1960
)
146
20.
D.
Ravinder
,
K.
Vijayakumar
,
Bull.matr.Sci
24
(
2001
)
575
21.
Z. X.
Yue
,
Z. Z.
hou
, L. L,
H.
Zhang
,
Z.
Gui
,
Magnetism.magnetic.materials.
208
(
2000
)
55
This content is only available via PDF.
You do not currently have access to this content.