Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.

1.
G. U.
Chibuike
1 and
S. C.
Obiora
2,
Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods
,
Applied and Environmental Soil Science
,
Hindawi Publishing Corporation
, Volume
2014
, Article ID 752708
2.
B. J.
Alloway
,
Heavy Metal in Soils
,
John Wiley & Sons
,
New York, NY, USA
,
1990
.
3.
I.
Raskin
,
P. B. A. N.
Kumar
,
S.
Dushenkov
, and
D. E.
Salt
, “
Bioconcentration of heavy metals by plants
,”
Current Opinion in Biotechnology
, vol.
5
, no.
3
, pp.
285
290
,
1994
.
4.
Z.
Shen
,
X.
Li
,
C.
Wang
,
H.
Chen
, and
H.
Chua
, “
Lead phytoextraction from contaminated soil with high-biomass plant species
,”
Journal of Environmental Quality
, vol.
31
, no.
6
, pp.
1893
1900
,
2002
.
5.
A. C.
Barrachina
,
F. B.
Carbonell
, and
J. M.
Beneyto
, “
Arsenic uptake, distribution, and accumulation in tomato plants: effect of arsenite on plant growth and yield
,”
Journal of PlantNutrition
, vol.
18
, no.
6
, pp.
1237
1250
,
1995
.
6.
K.
Jayakumar
,
M.
Rajesh
,
L.
Baskaran
, and
P.
Vijayarengan
, “
Changes in nutritional metabolism of tomato (Lycopersicon esculantum Mill.) plants exposed to increasing concentration of cobalt chloride
,”
International Journal of Food Nutrition and Safety
, vol.
4
, no.
2
, pp.
62
69
,
2013
.
7.
R.
Moral
,
J.Navarro
Pedreno
,
I.
Gomez
, and
J.
Mataix
, “
Effects of chromium on the nutrient element content and morphology of tomato
,”
Journal of Plant Nutrition
, vol.
18
, no.
4
, pp.
815
822
,
1995
.
8.
R.
Moral
,
I.
Gomez
,
J. N.
Pedreno
, and
J.
Mataix
, “
Absorption of Cr and effects on micronutrient content in tomato plant (LycopersicumesculentumM
.),”
Agrochimica
, vol.
40
, no.
2-3
, pp.
132
138
,
1996
.
9.
C. H. C.
Shekar
,
D.
Sammaiah
,
T.
Shasthree
, and
K. J.
Reddy
, “
Effect of mercury on tomato growth and yield attributes
,”
International Journal of Pharma and Bio Sciences
, vol.
2
, no.
2
, pp.
B358
B364
,
2011
.
10.
M.
Shenker
,
O. E.
Plessner
, and
E.
Tel-Or
, “
Manganese nutrition effects on tomato growth, chlorophyll concentration, and superoxide dismutase activity
,”
Journal of Plant Physiology
, vol.
161
, no.
2
, pp.
197
202
,
2004
.
11.
A.R.
Marin
,
S. R.
Pezeshki
,
P. H.
Masscheleyn
, and
H. S.
Choi
, “
Effect of dimethylarsinic acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants
,”
Journal of Plant Nutrition
, vol.
16
, no.
5
, pp.
865
880
,
1993
.
12.
M. J.
Abedin
,
J.
Cotter-Howells
, and
A. A.
Meharg
, “
Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water
,”
Plant and Soil
, vol.
240
, no.
2
, pp.
311
319
,
2002
.
13.
M. G.
Kibra
, “
Effects of mercury on some growth parameters of rice (Oryza sativa L
.),”
Soil & Environment
, vol.
27
, no.
1
, pp.
23
28
,
2008
.
14.
X.
Du
,
Y.-G.
Zhu
,
W.-J.
Liu
,
andX.-S.
Zhao
, “
Uptake ofmercury (Hg) by seedlings of rice (Oryza sativa L.) grown in solution culture and interactions with arsenate uptake
,”
Environmental and Experimental Botany
, vol.
54
, no.
1
, pp.
1
7
,
2005
.
15.
Y.-C.
Lin
and
C.-H.
Kao
, “
Nickel toxicity of rice seedlings:Cell wall peroxidase, lignin, and NiSO4-inhibited root growth
,”
Crop, Environment Bioinformatics
, vol.
2
, pp.
131
136
,
2005
.
16.
I.
Ahmad
,
M. J.
Akhtar
,
Z. A.
Zahir
, and
A.
Jamil
, “
Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars
,”
Pakistan Journal of Botany
, vol.
44
, no.
5
, pp.
1569
1574
,
2012
.
17.
M. S.
Yourtchi
and
H. R.
Bayat
, “
Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV
.),”
International Journal of Agriculture and Crop Sciences
, vol.
6
, no.
15
, pp.
1099
1103
,
2013
.
18.
D. C.
Sharma
and
C. P.
Sharma
, “
Chromium uptake and its effects on growth and biological yield of wheat
,”
Cereal Research Communications
, vol.
21
, no.
4
, pp.
317
322
,
1993
.
19.
S. K.
Panda
and
H. K.
Patra
, “
Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings
,”
Proceedings of the National Academy of Sciences, India
, vol.
70
, pp.
75
80
,
2000
.
20.
T.
Pandolfini
,
R.
Gabbrielli
, and
C.
Comparini
, “
Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L
.,”
Plant, Cell and Environment
, vol.
15
, no.
6
, pp.
719
725
,
1992
.
21.
V. S.
Barsukova
and
O. I.
Gamzikova
, “
Effects of nickel surplus on the element content in wheat varieties contrasting in Ni resistance
,”
Agrokhimiya
, vol.
1
, pp.
80
85
,
1999
.
22.
M.
Wang
,
J.
Zou
,
X.
Duan
,
W.
Jiang
, and
D.
Liu
, “
Cadmium accumulation and its effects onmetal uptake in maize (Zeamays L
.),”
Bioresource Technology
, vol.
98
, no.
1
, pp.
82
88
,
2007
.
23.
A.
Hussain
,
N.
Abbas
,
F.
Arshad
 et al, “
Effects of diverse doses of lead (Pb) on different growth attributes of Zea mays L
.,”
Agricultural Sciences
, vol.
4
, no.
5
, pp.
262
265
,
2013
.
24.
S.
Doncheva
,
K.
Georgieva
,
V.
Vassileva
,
Z.
Stoyanova
,
N.
Popov
, and
G.
Ignatov
, “
Effects of succinate on manganese toxicity in pea plants
,”
Journal of Plant Nutrition
, vol.
28
, no.
1
, pp.
47
62
,
2005
.
25.
S.
Doncheva
,
Z.
Stoynova
, and
V.
Velikova
, “
Influence of succinate on zinc toxicity of pea plants
,”
Journal of Plant Nutrition
, vol.
24
, no.
6
, pp.
789
804
,
2001
.
26.
A.P. G. C.
Marques
,
A. O. S. S.
Rangel
, and
P. M. L.
Castro
, “
Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology
,”
Critical Reviews in Environmental Science and Technology
, vol.
39
, no.
8
, pp.
622
654
,
2009
.
27.
P.
Wang
,
T.
Mori
,
K.
Komori
,
M.
Sasatsu
,
K.
Toda
, and
H.
Ohtake
, “
Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions
,”
Applied and Environmental Microbiology
, vol.
55
, no.
7
, pp.
1665
1669
,
1989
.
28.
Y.
Ishibashi
,
C.
Cervantes
, and
S.
Silver
, “
Chromium reduction in Pseudomonas putida
,”
Applied and Environmental Microbiology
, vol.
56
, no.
7
, pp.
2268
2270
,
1990
.
29.
C.
Garbisu
,
M. J.
Llama
, and
J. L.
Serra
, “
Effect of heavy metals on chromate reduction by Bacillus subtilis
,”
Journal of General and Applied Microbiology
, vol.
43
, no.
6
, pp.
369
371
,
1997
.
30.
C.
Garbisu
,
I.
Alkorta
,
M. J.
Llama
, and
J. L.
Serra
, “
Aerobic chromate reduction by Bacillus subtilis
,”
Biodegradation
, vol.
9
, no.
2
, pp.
133
141
,
1998
.
31.
C.
Garbisu
,
S.
González
,
W.-H.
Yang
 et al, “
Physiological mechanisms regulating the conversion of selenite to elemental selenium by Bacillus subtilis
,”
BioFactors
, vol.
5
, no.
1
, pp.
29
37
,
1995
.
32.
R. Ajaz Haja
Mohideena
,
V. Thirumalai
Arasuc
,
K. R.
Narayananb
, and
M. I. Zahir
Hussaind
, “
Bioremediation of heavy metal contaminated soil by the exigobacterium and accumulation of Cd, Ni, Zn and Cu from soil environment
,”
International Journal of Biological Technology
, vol.
1
, no.
2
, pp.
94
101
,
2010
.
33.
D.
van der Lelie
,
P.
Corbisier
,
L.
Diels
 et al, “Therole of bacteria in the phytoremediation of heavy metals,” in
Phytoremediation of Contaminated Soil and Water
,
N.
Terry
and
E.
Banuelos
, Eds., pp.
265
281
,
G Lewis
,
Boca Raton, Fla, USA
,
1999
.
34.
M.
Huyer
and
W. J.
Page
, “
Zn2+ increases siderophore production in Azotobacter vinelandii
,”
Applied and Environmental Microbiology
, vol.
54
, no.
11
, pp.
2625
2631
,
1988
.
35.
C.
White
,
A. K.
Sharman
, and
G. M.
Gadd
, “
An integrated microbial process for the bioremediation of soil contaminated with toxic metals
,”
Nature Biotechnology
, vol.
16
, no.
6
, pp.
572
575
,
1998
.
36.
M.
Valls
,
S.
Atrian
,
V.
de Lorenzo
, and
L. A.
Fernández
, “
Engineering amousemetallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil
,”
Nature Biotechnology
, vol.
18
, no.
6
, pp.
661
665
,
2000
.
37.
O. P.
Abioye
, “Biological remediation of hydrocarbon and heavy metals contaminated soil,” in
Soil Contamination
,
S.
Pascucci
, Ed.,
InTech
,
Vienna, Austria
,
2011
.
38.
A.
McCauley
,
C.
Jones
, and
J.
Jacobsen
, “Soil pH and organic matter,” in
Nutrient Management Module
, vol.
8
,
Montana State University Extension
,
Bozeman, Mont, USA
,
2009
.
39.
A.
Karaca
, “
Effect of organic wastes on the extractability of cadmium, copper, nickel, and zinc in soil
,”
Geoderma
, vol.
122
, no.
2–4
, pp.
297
303
,
2004
.
40.
C.
Garbisu
and
I.
Alkorta
, “
Basic concepts on heavy metal soil bioremediation
,”
The European Journal of Mineral Processing and Environmental Protection
, vol.
3
, no.
1
, pp.
58
66
,
2003
.
41.
E.
Salt
,
R. D.
Smith
, and
I.
Raskin
, “
Phytoremediation
,”
Annual Review of Plant Biology
, vol.
49
, pp.
643
668
,
1998
.
42.
R. L.
Chaney
,
M.
Malik
,
Y. M.
Li
 et al, “
Phytoremediation of soil metals
,”
Current Opinion in Biotechnology
, vol.
8
, no.
3
, pp.
279
284
,
1997
.
43.
A.J. M.
Baker
and
R. R.
Brooks
, “
Terrestrial higher plants which hyperaccumulate metallic elements: a review of their distribution, ecology and phytochemistry
,”
Biorecovery
, vol.
1
, pp.
81
126
,
1989
.
44.
L.
VanGinneken
,
E.
Meers
,
R.Guissonet
al
., “
Phytoremediation for heavy metal-contaminated soils combined with bioenergy production
,”
Journal of Environmental Engineering and Landscape Management
, vol.
15
, no.
4
, pp.
227
236
,
2007
.
45.
S. D.
Ebbs
and
L. V.
Kochian
, “
Toxicity of zinc and copper to Brassica species: implications for phytoremediation
,”
Journal of Environmental Quality
, vol.
26
, no.
3
, pp.
776
781
,
1997
.
46.
W. A.
Norvell
, “
Comparison of chelating agents as extractants for metals in diverse soil materials
,”
Soil Science Society of America Journal
, vol.
48
, no.
6
, pp.
1285
1292
,
1984
.
47.
M. J.
Blaylock
,
D. E.
Salt
,
S.
Dushenkov
 et al, “
Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents
,”
Environmental Science and Technology
, vol.
31
, no.
3
, pp.
860
865
,
1997
.
48.
R. L.
Chaney
,
S. L.
Brown
,
L.
Yin-Ming
 et al, “
Progress in risk assessment for soil metals, and in-situ remediation and phytoextraction of metals from hazardous contaminated soils
,” in
Proceedings of the US EPA’s Conference Phytoremediation: State of the Science Conference
,
Boston, Mass, USA
,
2000
.
49.
E.
Lombi
,
F. J.
Zhao
,
S. J.
Dunham
, and
S. P.
McGrath
, “
Phytoremediation of heavy metal-contaminated soils: Natural hyperaccumulation versus chemically enhanced phytoextraction
,”
Journal of Environmental Quality
, vol.
30
, no.
6
, pp.
1919
1926
,
2001
.
50.
S. P.
McGrath
and
F.
Zhao
, “
Phytoextraction of metals and metalloids from contaminated soils
,”
CurrentOpinion in Biotechnology
, vol.
14
, no.
3
, pp.
277
282
,
2003
.
51.
C. D.
Jadia
and
M. H.
Fulekar
, “
Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum
),”
Journal of Applied Biosciences
, vol.
10
, pp.
491
499
,
2008
.
52.
V.
Laperche
,
S. J.
Traina
,
P.
Gaddam
, and
T. J.
Logan
, “
Effect of apatite amendments on plant uptake of lead from contaminated sail
,”
Environmental Science and Technology
, vol.
30
, no.
10
, pp.
1540
1552
,
1997
.
53.
C. D.
Jadia
and
M. H.
Fulekar
, “
Phytoremediation of heavy metals: recent techniques
,”
African Journal of Biotechnology
, vol.
8
, no.
6
, pp.
921
928
,
2009
.
54.
United States Environmental Protection Agency
, Electrokinetic and Phytoremediation In Situ Treatment ofMetal-Contaminated Soil: State-of-the-Practice, EPA/542/R-00/XXX,
Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office
,
Washington, DC, USA
,
2000
.
55.
I.
Raskin
and
B. D.
Ensley
,
Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment
,
John Wiley & Sons
,
New York, NY, USA
,
2000
.
56.
C. L.
Rugh
,
J. F.
Senecoff
,
R. B.
Meagher
, and
S. A.
Merkle
, “
Development of transgenic yellowpoplar formercury phytoremediation
,”
Nature Biotechnology
, vol.
16
, no.
10
, pp.
925
928
,
1998
.
57.
R. B.
Meagher
,
C. L.
Rugh
,
M. K.
Kandasamy
,
G.
Gragson
, and
N. J.
Wang
, “Engineered phytoremediation of mercury pollution in soil and water using bacterial genes,” in
Phytoremediation of Contaminated Soil and Water
,
N.
Terry
and
G.
Bañuelos
, Eds., pp.
201
219
,
Lewis Publishers
,
Boca Raton, Fla, USA
,
2000
.
58.
United States Environmental Protection Agency (USEPA)
, “Introduction to phytoremediation,”
EPA 600/R-99/107
,
U.S. Environmental Protection Agency, Office of Research and Development
,
Cincinnati, Ohio, USA
,
2000
.
59.
R. B.
Meagher
, “
Phytoremediation: An Affordable, Friendly Technology to Restore Marginal Lands in the Twenty-First Century
,”
1998
.
60.
N.
Terry
,
A. M.
Zayed
,
M. P.
de Souza
, and
A. S.
Tarun
, “
Selenium in higher plants
,”
Annual Review of Plant Biology
, vol.
51
, pp.
401
432
,
2000
.
61.
G. S.
Bañuelos
,
H. A.
Ajwa
,
B.
Mackey
 et al, “
Evaluation of different plant species used for phytoremediation of high soil selenium
,”
Journal of Environmental Quality
, vol.
26
, no.
3
, pp.
639
646
,
1997
.
This content is only available via PDF.
You do not currently have access to this content.