According to the WHO, every two minutes there is one patient who died from cervical cancer. The high mortality rate is due to the lack of awareness of women for early detection. There are several factors that supposedly influence the survival of cervical cancer patients, including age, anemia status, stage, type of treatment, complications and secondary disease. This study wants to classify/predict cervical cancer survival based on those factors. Various classifications methods: classification and regression tree (CART), smooth support vector machine (SSVM), three order spline SSVM (TSSVM) were used. Since the data of cervical cancer are imbalanced, synthetic minority oversampling technique (SMOTE) is used for handling imbalanced dataset. Performances of these methods are evaluated using accuracy, sensitivity and specificity. Results of this study show that balancing data using SMOTE as preprocessing can improve performance of classification. The SMOTE-SSVM method provided better result than SMOTE-TSSVM and SMOTE-CART.

1.
I.
Nurlaila
, I dan
M.
Hadi
,
Kanker: Pertumbuhan Terapi dan Nonmedis
. Diperoleh dari: http://www.nano.lipi.go.id/utama.cgi?artikel &1187593839. Diakses tanggal 27 Maret 2015
2.
World Health Organization
.
World Cancer Report
.
WHO Press
(
2013
).
3.
Dinas
Kesehatan
. “
Hilangkan Mitos Tentang Kanker
,”
Kementerian Kesehatan Republik Indonesia
,
Jakarta
(
2014
).
4.
R.M.
Putri
,
Pemodelan Regresi Cox Terhadap Faktor Yang Mempengaruhi Ketahanan Hidup Penderita Kanker Serviks
:
Jurusan Statistika-ITS
. (
2008
)
5.
K.D.
Inayati
,
Analisis Survival pada Pasien Kanker Serviks di RSUD DR.Soetomo Surabaya Menggunakan Model Cox Stratifikasi
.
Jurusan Statistika-ITS
(
2015
)
6.
A.M.
Sirait
,
I.
Ariawan
,
F.
Aziz
.
Ketahanan Hidup Penderita Kanker Serviks di Rumah Sakit Cipto Mangun Kusumo Jakarta
.
Majalah Obstet Ginekol
,
21
(
3
),
183
190
. (
1997
)
7.
L.
Breiman
,
J.H.
Friedman
,
R.A.
Olshen
., &
C.J.
Stone
,
Classification And Regression Trees
.
New York
:
Chapman And Hall
(
1993
).
8.
Y.J.
Lee
dan
O.L.
Mangasarian
. “
SSVM: A Smooth Support Vector Machine for Classification
,”
Computational Optimization and Applications
, vol.
20
, pp.
5
22
. (
2001
).
9.
Y.
Yuan
,
W.
Fan
, and
D.
Pu
,
Spline Function Smooth Support Vector Machine For Classification
.
Journal of Industrial and Management Optimization
,
3
(
3
): p.
529
542
.
2007
10.
S.W.
Purnami
,
V.
Chosuvivatwong
,
H.
Sriplung
,
E.
Suryanto
,,
Comparison of Piecewise Polynomial Smooth Support Vector Machine to Classify Diagnosis of Cervical Cancer
,
International Journal of Applied Mathematics and Statistics™
53
,
2015
, (
6
),
158
166
11.
V. N.
Chawla
,
C4.5 and Imbalance Data sets: Investigating the Effect of Sampling Method, Probabilistic Estimate, and Decision Tree Structure
. (
2003
, Aug 21)
12.
S.H.
Park
,
J.M.
Goo
, and
C.H.
Jo
.
Receiver Operating Characteristic (ROC) Curve : Practical Review for Radiologis
.
Korean J Radiol
,
5
(
1
): p.
11
18
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.