The development of rapid and automatic pigment characterization method become an important issue due to the fact that there are only less than 1% of plant pigments in the earth have been explored. In this research, a mathematical model based on artificial intelligence approach was developed to simplify and accelerate pigment characterization process from HPLC (high-performance liquid chromatography) procedure. HPLC is a widely used technique to separate and identify pigments in a mixture. Input of the model is chromatographic data from HPLC device and output of the model is a list of pigments which is the spectrum pattern is discovered in it. This model provides two dimensional (retention time and wavelength) fingerprints for pigment characterization which is proven to be more accurate than one dimensional fingerprint (fixed wavelength). Moreover, by mimicking interconnection of the neuron in the nervous systems of the human brain, the model have learning ability that could be replacing expert judgement on evaluating spectrum pattern. In the preprocessing step, principal component analysis (PCA) was used to reduce the huge dimension of the chromatographic data. The aim of this step is to simplify the model and accelerate the identification process. Six photosynthetic pigments i.e. zeaxantin, pheophytin a, α-carotene, β-carotene, lycopene and lutein could be well identified by the model with accuracy up to 85.33% and processing time less than 1 second.

1.
K.
Wells
,
Journal of the International Colour Association
11
,
28
36
(
2013
).
2.
R.
Upadhyay
and
M.S.
Choudhary
,
Global Journal of Bio-Science and Biotechnology
3
(
1
),
97
99
(
2014
).
3.
R.
Upadhyay
and
M.S.
Choudhary
,
Int. Journal of Pharmaceutical Research and Bio-Science
1
(
5
),
309
316
(
2012
).
4.
L.
Schluter
,
T.L.
Lauridsen
,
G.
Krogh
and
T.
Jorgensen
,
Freshwater Biology
51
,
1474
(
2006
).
5.
V.
Brotas
and
M.R.
Plante-Cuny
, “
The Use of HPLC Pigment Analysis to Study Microphytobenthos Communities
” in
ActaOecologica, Proceedings of the Plankton Symposium
,
Elsevier
,
2003
, Vol.
24
(
1
), pp.
S109
S115
.
6.
J.G.
Lashbrooke
,
P.R.
Young
,
A.E.
Strever
,
C.
Stander
and
M.A.
Vivier
,
Australian Journal of Grape and Wine Research
.
16
,
349
(
2010
).
7.
S.
Milenkovic
,
J.B.
Zvezdanović
,
T.D.
Anđelković
,
Advanced Technologiesv
1
(
1
),
16
24
(
2012
).
8.
A.
Pintea
,
C.
Bele
,
S.
Andre
and
C.
Socaciu
,
Acta Biologica Szegediensis
47
(
1-4
),
37
40
(
2003
).
9.
J.
Ricardo Lucio-Gutierrez
,
J.
Coello
and
S.
Maspoch
,
AnalyticaChimicaActa
.
710
,
40
(
2012
).
10.
J.
Ricardo Lucio-Gutierrez
,
A.
Garza-Juarez
,
J.
Coello
,
S.
Maspoch
,
M.L.
Salazar-Cavazos
,
R.
Salazar-Aranda
and
N.W.
de Torres
,
Journal of Chromatography A
.
1235
,
68
(
2012
).
11.
K.R.
Prilianti
,
Y.
Setiawan
,
Indriatmoko
,
M.A.S.
Adhiwibawa
,
L.
Limantara
,
T.H.P.
Brotosudarmo
, “
Probabilistic Classification Method on Multi Wavelength Chromatographic Data for Photosynthetic Pigments Identification
”in
Symposium on Biomathematic 2013
,
AIP Conference Proceeding
,
2013
, pp.
78
83
.
12.
C.W.
Lim
,
S.H.
Chan
,
A.
Visconti
,
AMB Express
1
,
40
(
2011
).
13.
S.E.
Reichhenbach
,
X.
Tian
,
Q.
Tao
,
D.R.
Stoll
,
P.W.
Carr
,
J. Sep. Sci.
33
,
1365
1374
(
2010
).
14.
R.K.
Tripathy
,
A.
Acharya
,
S.K.
Choudhary
,
S.K.
Sahoo
,
Indonesian J. Of Elec. Eng. And Informatics
1
No.
2
,
59
63
(
2013
).
15.
N.
Srinivas
,
A.V.
Babu
,
M.D.
Rajak
,
American Int. J. Of Research in Sci. Tech. And Math
13
,
82
90
(
2013
).
16.
J.
Gorodkin
,
B.
Sogaard
,
H.
Bay
,
H.
Doll
,
P.
Kolster
,
S.
Brunak
,
Computer and Chemistry
23
,
301
307
(
2001
).
17.
Y.
Chen
,
M.
Xie
,
Y.
Yan
,
S.
Zhu
,
S.
Nie
,
C.
Li
,
Y.
Wang
,
X.
Gong
, “
Discrimination of GanodermaLucidum According to Geographical Origin with Near Infrared Diffuse Reflectance Spectroscopy and Pattern Recognition Technique
”,
Anal.Chim.Acta
,
2008
, Vol.
618
, pp.
121
130
.
18.
D.
Graupe
,
Principles of Artificial Neural Networks
3rd Ed. (
World Scientific Publishing Co. Ltd.
,
Danvers-USA
,
2013
).
This content is only available via PDF.
You do not currently have access to this content.