Mathematical model of respiratory diseases spread with Discrete Time Markov Chain (DTMC) and deterministic approach for constant total population size are analyzed and compared in this article. Intervention of medical treatment and use of medical mask included in to the model as a constant parameter to controlling influenza spreads. Equilibrium points and basic reproductive ratio as the endemic criteria and it level set depend on some variable are given analytically and numerically as a results from deterministic model analysis. Assuming total of human population is constant from deterministic model, number of infected people also analyzed with Discrete Time Markov Chain (DTMC) model. Since Δt → 0, we could assume that total number of infected people might change only from i to i + 1, i − 1, or i. Approximation probability of an outbreak with gambler’s ruin problem will be presented. We find that no matter value of basic reproductive ℛ0, either its larger than one or smaller than one, number of infection will always tends to 0 for t → ∞. Some numerical simulation to compare between deterministic and DTMC approach is given to give a better interpretation and a better understanding about the models results.

1.
Aldila
D.
,
Nuraini
N.
,
Soewono
E.
,
Optimal Control Problem in Preventing of Swine Flu Disease Transmission
,
Applied Mathematical Sciences
8
(
71
),
3501
3512
.
2.
Alexander
M.E.
,
Bowman
C.
,
Moghadas
S. M.
,
Summers
R.
,
Gumel
A. B.
,
Sahai
B. M.
,
A vaccination model for transmission dynamics of influenza
.
SIAM J Appl Dyn Syst
(
2014
)
3
:
503524
.
3.
Alexander
M.E.
,
Moghadas
S.M.
,
Wu
J.
,
A delay differential model for pandemic influenza with antiviral treatment
,
Bull Math Biol
(
2008
)
70
:
382397
.
4.
Allen
L.J.S.
,
Brauer
F.
,
Van den Driessche
P.
,
Wu
J.
,
Mathematical Epidemiology : An Introduction to Stochastic Epidemic Models
,
Springer
,
Lecture Notes in Mathematics
Volume
1945
, (
2008
), Pages
81
130
.
5.
Barnea
O.
,
Yaari
R.
,
Katriel
G.
,
Stone
L.
,
Modelling seasonal influenza in Israel
,
Math. Biosci. Eng.
, (
2011
)
8
(
2
):
561
573
.
6.
Bustamam
A.
,
Burrage
K.
,
Hamilton
N.
,
Fast Parallel Markov Clustering in Bioinformatics Using Massively Parallel Graphics Processing Unit Computing
,
IEEE
, (
2010
) DOI .
7.
Chowell
G.
,
Blumberg
S.
,
Simonsen
L.
,
Miller
M.A.
,
Viboud
C.
,
Synthesizing data and models for the spread of MERS-CoV, 2013:Key role of index cases and hospital transmission
,
Epidemics
9
(
2014
)
4051
.
8.
Diekmann
,
O.
,
Heesterbeek
,
J.A.P.
,
Mathematical epidemiology of infectious diseases, Model Building, Analysis and Interpretation
,
John Wiley & Son
,
Chichester
(
2000
).
9.
Diekmann
,
O.
,
Heesterbeek
,
J.A.P.
,
Metz
J.A.J.
,
On the definition and the computation of the basic reproduction ratio of R0 in models of infectious disease in heterogeneous populations
,
J. Math. Biol.
(
1990
)
28
:
365
382
.
10.
Diekmann
,
O.
,
Heesterbeek
J.A.P.
and
Roberts
M.G.
,
The Construction of Next-Generation Matrices for Compartmental Epidemic Models
,
J. R. Soc. Interface
(
2010
)
7
,
873
885
.
11.
DiazGranados
,
C. A.
 et al. 
Efficacy of high-dose versus standard-dose influenza vaccine in older adults
,
N. Engl. J. Med.
(
2014
)
371
,
635645
.
12.
Ferguson
N.M.
,
Cummings
D.A.
,
Fraser
C.
,
Cajka
J.C.
,
Cooley
P.C.
, et al. 
Strategies for mitigating an influenza pandemic
.
Nature
(
2006
)
442
:
448452
.
13.
Florian
K.
,
Peter
P.
,
Advances in the development of influenza virus vaccines
,
Nature Reviews Drug Discovery
(
2015
)
14
,
167182
.
14.
http://cdc.gov,
Flu (Influenza) and the Vaccine to Prevent It
, updated
2014
.
15.
Ibe
O.C.
,
Markov Processes for Stochastic Modeling
,
Elsevier Inc.
,
San Diego, London
(
2009
).
16.
Julia
R. G.
,
Sebastian
B.
,
Cecile
V.
,
Lone
S.
,
Ottar
N.B.
,
Jeffrey
S.
,
Dennis
L. C.
,
Farid
K.
,
Bryan
T.G.
,
Spatial Transmission of 2009 Pandemic Influenza in the US
,
Plos Computational Biology
, (
2014
), DOI: .
17.
Nyuk
S. C.
,
Jean
M. T.
,
Robert
J. S.
,
A mathematical model of avian influenza with half-saturated incidence
,
Theory Biosci.
, (
2014
)
133
:
23
38
.
18.
Oksendal
B.
,
Stochastic Differential Equations : An Introductions With Applications
,
Springer
2014
.
19.
E.
Renshaw
,
Modelling Biological Populations in Space and Time
,
Cambridge University
,
Cambridge
,
1993
.
20.
Rong-Hua
W.
,
Zhen
J.
,
Quan-Xing
L.
,
Johan Van De
K.
,
avid
A.
,
A Simple Stochastic Model with Environmental Transmission Explains Multi-Year Periodicity in Outbreaks of Avian Flu
,
PlosOne
(
2012
), DOI: .
21.
Ross
S.M.
,
Introduction to Probability Models
(10th ed.),
Academic Press
,
San Diego
(
2010
).
22.
Simini
F.
,
Gonzalez
M.C.
,
Maritan
A.
,
Barabasi
A.L.
,
A universal model for mobility and migration patterns
,
Nature
(
2012
)
484
:
96100
.
23.
Taylor
H.M.
,
Karlin
S.
,
An Introduction to Stochastic Modeling
(3rd ed.),
Academic Press
,
San Diego, London, Boston, and New York
(
1998
).
24.
World Health Organization
,
2013
.
Revised Interim Case Definition for Reporting to WHOMiddle East respiratory syndrome Coronavirus (MERS-CoV)
Last access on February 13].
25.
World Health Organization
,
2015
.
Seasonal Influenza
. http://www.who.int/mediacentre/factsheets/fs211/en/. [Last access on August 25]
26.
Yin
,
George G.
,
Zhang
,
Qing
,
Continuous-Time Markov Chains and Applications : A Two-Time-Scale Approach
,
Springer
2013
.
This content is only available via PDF.
You do not currently have access to this content.