Satellite Earth observation data in the visible and near-infrared (VNIR) wavelengths represent a useful source of information for forest systems monitoring through derived biogeophysical parameters (vegetation index, leaf area index, canopy cover, fraction of absorbed photosynthetically active radiation, chlorophyll content, net primary production, canopy water stress, etc.). Use of satellite remote sensing data to assess forest spatio-temporal changes due to climatic or anthropogenic stressors is an excellent example of the value of multispectral and multitemporal observations. Fusion technique was applied to time-series multispectral and multitemporal satellite imagery (NOAA AVHRR, MODIS Terra/Aqua, Landsat ETM and IKONOS satellite data) for periurban forest areas Cernica-Branesti, placed in the neighboring of Bucharest town, Romania, over 2002-2014 period.

1.
Q.
Weng
, “
A remote sensing–GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta, China
”,
Int. Journal of Remote Sensing
,
22
(
10
),
1999
2014
,
2001
.
2.
J.
Pelletier
,
S. J.
Goetz
,”
Baseline data on forest loss and associated uncertainty: advances in national forest monitoring
”,
Environmental Research Letters
10
,
021001
doi:,
2015
.
3.
R.
Bertrand
,
J.
Lenoir
,
C.
Piedallu
, et al., “
Changes in plant community composition lag behind climate warming in lowland forests
”,
Nature
479
(
7374
),
517
520
,
2011
.
4.
W.B.
Cohen
,
Z.
Yang
,
R.
Kennedy
,”
Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync — tools for calibration and validation
”,
Remote Sensing of Environment
114
(
12
),
2911
2924
, 2010.
5.
T.E.
Kolb
, “
A new drought tipping point for conifer mortality
”,
Environmental Research Letter
10
,
031002
doi:,
2015
.
6.
K.
Bergen
,
D.
Brown
,
J.
Rutherforda
,
E.
Gustafson
,”
Change detection with heterogeneous data using ecoregional stratification,statistical summaries and a land allocation algorithm
”,
Remote Sensing of Environment
97
,
434
446
,
2005
.
7.
M.
Batty
&
D.
Howes
D., “Predicting temporal patterns in urban development from remote imagery”,
J. P.
Donnay
,
M. J.
Barnsley
, &
Longley P.
A
(Eds.),
Remote sensing and urban analysis
,
185
204
,
London
:
Taylor and Francis
,
2001
.
This content is only available via PDF.
You do not currently have access to this content.