Quantum mechanical rotation operators are the subject of quantum mechanics, mathematics and pulsed magnetic resonance spectroscopies, namely NMR, EPR and ENDOR. They are also necessary for spin based quantum information systems. The rotation operators of spin 1/2 are well known and can be found in related textbooks. But rotation operators of other spins greater than 1/2 can be found numerically by evaluating the series expansions of exponential operator obtained from Schrödinger equation, or by evaluating Wigner-d formula or by evaluating recently established expressions in polynomial forms discussed in the text. In this work, explicit symbolic expressions of x, y and z components of rotation operators for spins 1 to 2 are worked out by evaluating series expansion of exponential operator for each element of operators and utilizing linear curve fitting process. The procedures gave out exact expressions of each element of the rotation operators. The operators of spins greater than 2 are under study and will be published in a separate paper.

1.
E.P.
Wigner
, “Group theory and its applications to the quantum mechanics of atomic spectra,” (
Academic Press
1959
).
2.
A.
Messiah
,
Quantum Mechanics
Vol.
2
, (
North Holland Publishing Co.
,
1967
).
3.
J.J.
Sakuari
, and
J.
Napolitani
Modern Quantum Mechanics
(
Addison–Wesley
,
2011
).
4.
M.A.
Morrison
,
G.A.
Parker
,
J. Aust. Phys.
40
465
497
(
1987
).
5.
M.A.
Blanca
,
M.
Flórez
, and
M.
Bermejo
,
Theochem
419
19
27
(
1997
), doi:.
6.
H.
Dachsel
,
J. Chem. Phys
,
124
144115–1
to
144115–6
(
2006
), .
7.
Z.
Gimbutas
,
L.
Greengard
,
J. Comput. Phys.
,
228
5621
5627
(
2009
).
8.
G.
Aubert
,
AIP Advances
3
,
062121–1
to
062121–25
(
2013
), .
9.
T.L.
Curtright
,
D.B.
Fairlie
, and
Sachos
,
C.
,
SIGMA
,
10
1
15
(
2014
).
10.
T.L.
Curtright
, and
T.S.
Van Kortryk
, http://arxiv.org/abs/1408.0767v2,
1
15
(
2014
).
11.
E.
Fukushima
, and
S.B.W.
Roeder
,
Experimental pulse NMR: a nuts and bolts approach
(
Westview Press
,
1993
).
12.
G.S.
Rule
,
T.K.
Hitchens
,
Fundamentals of Protein NMR Spectroscopy
, (
Springer
,
2006
).
13.
I.S.
Oliviera
,
T.J.
Bonagamba
,
Sarthour
,
R.S.
Freitas
, J.C.C and
E.R.
deAzevedo
,
NMR Quantum Information Processing
(
Elsevier
,
2007
).
14.
J.A.
Jones
,
Prog. Nucl. Magn. Reson. Spectrosc.
38
326
360
(
2001
), doi:.
15.
A.
Schweiger
, and
G.
Jeschke
,
Principles of Pulse Electron Paramagnetic Resonance
(
Oxford University Press
,
2001
).
This content is only available via PDF.
You do not currently have access to this content.