The Voyager spacecraft are making the first direct plasma measurements of the heliosheath and interstellar medium. This paper discusses the differences in the heliosheath observations of Voyager 1 (V1) and Voyager 2 (V2), the V1 heliopause crossing, and observations of transient structures in the local interstellar medium (LISM). The heliosheath velocities at V1 are smaller than expected throughout the heliosheath and are zero in the stagnation region, which persists for 8 AU before the heliopause crossing. The V2 flow profile is very different from that at V1; the average speed stays constant at 145 km/s but the flow has turned over 60° from radial. The heliopause crossing region has numerous structures in cosmic rays, termination shock particles, and magnetic field so that the exact heliopause crossing point is still controversial. Solar transients drive shocks which propagate through the LISM, generate anisotropies and intensity changes in the galactic cosmic rays (GCRs) and excite plasma and radio waves.

1.
Burlaga
L F
,
Ness
N F
,
Acuna
M H
,
Lepping
R P
,
Connerney
J E P
,
Stone
E C
, and
McDonald
F B
2005
Science
309
2027
.
2.
Decker
R B
,
Krimigis
S M
,
Roelof
E C
,
Hill
M E
,
Armstrong
T P
,
Gloeckler
G
,
Hamilton
D C
and
Lanzerotti
L J
2005
Science
309
2020
.
3.
Stone
E C
,
Cummings
A C
,
McDonald
F B
,
Heikkila
B
,
Lal
N
and
Webber
,
W R
2005
Science
309
2017
.
4.
Burlaga
L F
,
Ness
N F
,
Acuna
M H
,
Lepping
R P
,
Connerney
J E P
, and
Richardson
J D
2008
Nature
454
75
.
5.
Decker
R B
,
Krimigis
S M
,
Roelof
E C
,
Hill
M E
,
Armstrong
T P
,
Gloeckler
G
,
Hamilton
D C
and
Lanzerotti
L J
2008
Nature
454
67
.
6.
Richardson
J D
,
Kasper
J C
,
Wang
C
,
Belcher
J W
and
Lazarus
A J
2008
Nature
454
63
.
7.
Stone
E C
,
Cummings
A C
,
McDonald
F B
,
Heikkila
B C
,
Lal
N
,
Webber
W R
2008
Nature
454
71
.
8.
Burlaga
L F
,
Ness
N F
,
Stone
E C
2013
Science
341
147
.
9.
Krimigis
S M
,
Roelof
E C
,
Decker
R B
,
Hill
M E
,
Armstrong
T P
,
Gloeckler
G
,
Hamilton
D C
and
Lanzerotti
L J
2013
Science
341
144
.
10.
Stone
E C
,
Cummings
A C
,
McDonald
F B
,
Heikkila
B C
,
Lal
N
,
Webber
W R
2013
Science
341
150
.
11.
Gurnett
D A
,
Kurth
W S
,
Burlaga
L F
and
Ness
N F
2013
Science
341
1489
.
12.
Decker
R B
,
Krimigis
S M
,
Roelof
E C
and
Hill
M E
2010
AIP Conf. Proc.
1302
51
.
13.
Krimigis
S M
,
Roelof
E C
,
Decker
R B
,
Hill
M E
2011
Nature
474
359
.
14.
Richardson
J D
and
Decker
R B
2014
Astrophys. J.
792
196
.
15.
Stone
E C
and
Cummings
A C
2012
Proceedings of the 32ND International Cosmic Ray Conference
,
Beijing
2011
12
23
.
16.
Richardson
J D
2011
Astrophys. J.
740
113
.
17.
Hill
M E
,
Decker
R B
,
Brown
L E
,
Drake
J F
,
Hamilton
D C
,
Krimigis
S M
and
Opher
M
2014
Astrophys. J.
781
94
.
18.
Swisdak
M
,
Drake
J F
and
Opher
M
2013
Astrophys. J. Lett.
774
L8
.
19.
Burlaga
L F
and
Ness
N F
2014
Astrophys. J.
784
146
.
20.
Gurnett
D A
,
Kurth
W S
, and
Stone
E C
2003
Geophys. Res. Lett.
30
2209
.
21.
Gurnett
D A
,
Kurth
W S
,
Stone
E C
,
Cummings
A C
,
Ness
N F
and
Burlaga
L F
2015
Astrophys. J. Lett.
809
121
.
22.
Fuselier
S A
and
Cairns
I H
2013
Astrophys. J.
771
83
.
23.
Liu
Y D
,
Richardson
J D
,
Wang
C
and
Luhmann
J G
2014
Astrophys. J.
788
L28
.
This content is only available via PDF.
You do not currently have access to this content.