This work simulated the electron acceleration by magnetic islands in a drastically evolved solar coronal current sheet via the combined 2.5-dimensional (2.5D) resistive Magnetohydrodynamics (MHD) and guiding-center approximation test-particle methods. With high magnetic Reynolds number of 105, the long–thin current sheet is evolved into a chain of magnetic islands, growing in size and coalescing with each other, due to tearing instability. The acceleration of electrons is studied in one typical phase when several large magnetic islands are formed. The results show that the electrons with an initial Maxwell distribution evolve into a heavy-tailed distribution and more than 20% of the electrons can be accelerated higher than 200 keV within 0.1 second and some of them can even be energized up to MeV ranges. The most energetic electrons have a tendency to be around the outer regions of the magnetic islands or to be located in the small secondary magnetic islands. We find that the acceleration and spatial distributions of the energetic electrons is caused by the trapping effect of the magnetic islands and the distributions of the parallel electric field Ep.

1.
M. J.
Aschwanden
,
Space Sci. Rev.
101
,
1
227
(
2002
).
2.
N.
Nishizuka
,
H.
Takasaki
,
A.
Asai
, and
K.
Shibata
,
Astrophys. J.
711
,
1062
1072
(
2010
).
3.
M.
Karlický
and
M.
Bárta
,
Astrophys. J.
733
, p.
107
(
2011
).
4.
H.-Q.
Song
,
Y.
Chen
,
G.
Li
,
X.-L.
Kong
, and
S.-W.
Feng
,
Phys. Rev. X
2
, p.
021015
(
2012
).
5.
R. P.
Lin
,
Space Sci. Rev.
159
,
421
445
(
2011
).
6.
V. V.
Zharkova
,
K.
Arzner
,
A. O.
Benz
,
P.
Browning
,
C.
Dauphin
,
A. G.
Emslie
,
L.
Fletcher
,
E. P.
Kontar
,
G.
Mann
,
M.
Onofri
, and
V.
Petrosian
,
Space Sci. Rev.
159
,
357
420
(
2011
).
7.
Y. E.
Litvinenko
,
Astrophys. J.
462
, p.
997
(
1996
).
8.
X. R.
Fu
,
Q. M.
Lu
, and
S.
Wang
,
Physics of Plasmas
13
, p.
012309
(
2006
).
9.
C.
Huang
,
Q.
Lu
, and
S.
Wang
,
Physics of Plasmas
17
, p.
072306
(
2010
).
10.
M.
Gordovskyy
,
P. K.
Browning
, and
G. E.
Vekstein
,
Astrophys. J.
720
,
1603
1611
(
2010
).
11.
S.
Perri
,
G.
Zimbardo
, and
A.
Greco
,
J. Geophys. Res.
116
, p.
5221
(
2011
).
12.
K. G.
Tanaka
,
T.
Yumura
,
M.
Fujimoto
,
I.
Shinohara
, and
S. V.
Badman
,
Phys. Plasmas
17
, p.
102902
(
2010
).
13.
M.
Oka
,
T.-D.
Phan
,
S.
Krucker
,
M.
Fujimoto
, and
I.
Shinohara
,
Astrophys. J.
714
,
915
926
(
2010
).
14.
M.
Hoshino
,
Phys. Rev. Lett.
108
, p.
135003
(
2012
).
15.
J.
Birn
,
J. F.
Drake
,
M. A.
Shay
,
B. N.
Rogers
,
R. E.
Denton
,
M.
Hesse
,
M.
Kuznetsova
,
Z. W.
Ma
,
A.
Bhattacharjee
,
A.
Otto
, and
P. L.
Pritchett
,
J. Geophys. Res.
106
,
3715
3720
(
2001
).
16.
Y.
Wang
,
F. S.
Wei
,
X. S.
Feng
,
S. H.
Zhang
, and
P. B.
Zuo
,
Phys. Rev. Lett.
105
, p.
195007
(
2010
).
17.
S.-H.
Zhang
,
X.-S.
Feng
,
Y.
Wang
, and
L.-P.
Yang
,
Chinese Phys. Lett.
28
, p.
089601
(
2011
).
18.
S.-H.
Zhang
,
H.
Zhao
,
A.-M.
Du
, and
X.
Cao
,
Sci China Tech Sci
56
,
2059
2065
(
2013
).
This content is only available via PDF.
You do not currently have access to this content.