Nowadays, the need for new materials is urgent due to the scarcity of conventional materials and energy resources. The environmental issue requires materials which are biodegradable. There are many composites, arranged from synthetic fibers and matrix, which cannot be recyclable after their lifetime. In this research, the utilization potency of zalacca midrib wastes for their fibers as composite reinforcement were investigated, especially after the alkaline treatment to improve their characteristics. The influence of alkaline treatment on the density, functional groups of the fiber surface, thermal stability and crystallinity were measured and/or analyzed by linear-density-and-diameter-calculation, FTIR, TGA-DTA and XRD, respectively. The result showed that the zalacca midrib fibers had lower density than synthetic fibers and several natural fibers. Analysis of FTIR spectra indicated that the alkaline treatment of NaOH slightly raised their density because it removed several functional groups which attributed to the hemicellulose and lignin. TGA-DTA analysis indicated that zalacca fibers had good thermal stability until temperature of 220°C and it was improved by alkaline treatment. XRD analysis showed that the crystallinity of zalacca fibers was higher than several natural fibers like rice straw, sorghum stem and wheat straw fibers. Their crystallinity index was higher than wheat straw fiber. The alkaline treatment increases the crystallinity and crystallinity index rather than untreated fibers.

1.
G.
Koronis
,
A.
Silva
, and
M.
Fontul
,
Composite. Part B
.
44
(
1
),
120
127
(
2013
).
2.
D. G.
Callister
, W.D. and
Rethwisch
,
Fundamentals of Materials Science and Engineering: An Integrated Approach
, 4th ed. (
John Wiley & Sons
,
Inc, New Jersey
,
2013
).
3.
A. S.
Luyt
and
M. E.
Malunka
,
Thermochim. Acta.
426
(
1–2
),
101
107
(
2005
).
4.
S. M.
Luz
,
J.
Del Tio
,
G. J. M.
Rocha
,
A. R.
Gonçalves
, and
A. P.
Del’Arco
,
Compos. Part A Appl. Sci. Manuf.
39
(
9
),
1362
1369
(
2008
).
5.
S. V.
Joshi
,
L. T.
Drzal
,
A. K.
Mohanty
, and
S.
Arora
, “
Compos. Part A Appl. Sci. Manuf.
35
(
3
),
371
376
(
2004
).
6.
J.
Mussig
,
Industrial Applications of Natural Fibres
, 1st ed. (
John Willey & Sons, Ltd
.
Bremen, Germany
,
2010
).
7.
A. T.
Martinez
,
F. J.
Ruiz-Duenas
,
M. J.
Martinez
,
J. C.
Del Rio
, and
A.
Gutierrez
,
Curr. Opin. Biotechnol.
20
,
348
357
(
2009
).
8.
S.
Rodriguez
,
F. M.
Margem
,
S. N.
Monteiro
, and
V.
Calado
,
Materials Science and Engineering: A
.
557
,
17
28
(
2012
).
9.
V. K.
Takur
,
Green Composites from Natural Resources
, (
CRC Press
,
Florida, US
,
2013
).
10.
M. M.
Kabir
,
H.
Wang
,
K. T.
Lau
, and
F.
Cardona
,
Composite. Part B
.
53
,
362
368
(
2013
).
11.
M. K.
Hossain
,
M. W.
Dewan
,
M.
Hosur
, and
S.
Jeelani
,
Compos. Part B Eng.
42
(
6
),
1701
1707
(
2011
).
12.
M. J.
John
and
S.
Thomas
,
Biofibres and biocomposites
.
71
,
343
364
(
2008
).
13.
M.
Brebu
and
C.
Vasile
,
Cellul. Chem. Technol.
44
(
9
),
353
363
(
2010
).
14.
A. K.
Mohanty
,
M.
Misra
, and
L. T.
Drzal
,
Natural Fibers, Biopolymers, and Biocomposites
. (
CRC Press Florida
,
US
,
2005
.
15.
L. J.
Gibson
,
J. R. Soc. Interface.
9
(
76
),
2749
2766
(
2012
).
16.
P.
Saha
,
S.
Manna
,
S. R.
Chowdhury
,
R.
Sen
,
D.
Roy
, and
B.
Adhikari
,
Bioresour. Technol.
101
(
9
),
3182
3187
(
2010
).
17.
V. S.
Sreenivasan
,
S.
Somasundaram
,
D.
Ravindran
,
V.
Manikandan
, and
R.
Narayanasamy
,
Material and Design
.
32
(
1
),
453
461
(
2011
)
18.
M.
Truong
,
W.
Zhong
,
S.
Boyko
, and
M.
Alcock
,
J. Text. Inst.
100
(
6
),
525
529
(
2009
).
19.
N.
Terinte
,
R.
Ibbett
, and
K. C.
Schuster
,
Lenzinger Berichte.
89
,
118
131
(
2011
).
20.
S.
Panthapulakkal
,
a.
Zereshkian
, and
M.
Sain
,
Bioresour. Technol.
97
(
2
),
265
272
, (
2006
).
21.
R. M.
Rowell
,
J. S.
Han
, and
J. S.
Rowell
, “
Characterization and Factors Effecting Fiber Properties
,”
Nat. Polym. an Agrofibers Compos
, (
2000
). pp.
115
134
.
22.
M.
Sasaki
,
Bioresource Technology
.
86
, pp.
301
304
, (
2003
).
23.
A. K.
Bledzki
and
J.
Gassan
,
Progress in Polymer Science
.
24
, pp.
221
274
, (
1999
).
24.
D. A
Skoog
,
F. J.
Holler
, and
T. a
Nieman
,
Principles of Instrumental Analysis
,
Brooks/Cole
. (
1998
).
25.
L. Y.
Mwaikambo
and
M. P.
Ansell
,
J. Appl. Polym. Sci.
84
(
12
),
2222
2234
(
2002
).
26.
H.
Suryanto
,
Y. S.
Irawan
,
E.
Marsyahyo
, and
R.
Soenoko
,
J. Nat. Fiber.
3
,
1
19
(
2014
).
27.
A.
El Oudiani
,
Y.
Chaabouni
,
S.
Msahli
, and
F.
Sakli
,
Carbohydr. Polym.
86
(
3
),
1221
1229
(
2011
).
28.
M.
Kostic
,
B.
Pejic
, and
P.
Skundric
,
Bioresour. Technol.
99
(
1
),
94
99
(
2008
).
29.
H. S. S.
Sharma
,
T. W.
Fraser
,
D.
McCall
,
N.
Shields
, and
G.
Lyons
,
J. Text. Inst.
86
(
4
),
539
548
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.