In the present work, the computation of cutoff wavenumbers in waveguides with both straight and curved edge boundaries have been carried out using subparametric transformations. As compared to the conventional finite element methods, the subparametric transformation takes the advantage of mapping curved boundaries with greater accuracy. Under this transformation, any triangle with two straight sides and one curved side can be mapped to a standard right-angled triangle. This method has been applied to a regular L-shaped rectangular waveguide and also on an irregular curved geometry. The obtained cutoff frequencies of regular geometry are in close agreement with the existing values found in literature and those of irregular boundary have converged very well.

1.
M. A.
Bhatti
,
Fundamental Finite Element Analysis and Applications
, (
John Wiley & Sons, Inc.
,
New York
,
2005
).
2.
M.
Koshiba
and
K.
Inoue
,
IEEE Trans. Microwave Theory Tech.
371
377
,
40
(
1992
).
3.
M.
Lenoir
,
SIAM J. Numer. Anal.
1
20
,
23
(
1986
).
4.
K. J.
Bathe
,
Finite Element Procedures
, (
MIT press
,
Cambridge (MA), Englewood Cliffs, NJ
,
1996
).
5.
B.
Schiff
and
Z.
Yosibash
,
IEEE Trans. Microwave Theory Tech.
214
220
,
48
(
2000
).
6.
M.
Swaminathan
,
E.
Arvas
,
T.K.
Sarkar
, and
A.R.
Djordjevic
,
IEEE Trans. Microwave Theory Tech.
154
159
,
38
(
1990
).
7.
H. T.
Rathod
,
K. V.
Nagaraja
,
V. Kesavulu
Naidu
, and
B.
Venkatesudu
,
Finite Elem. Anal. Des.
920
932
,
44
(
2008
).
8.
V. Kesavulu
Naidu
and
K. V.
Nagaraja
,
Appl. Math. Comput.
6893
6910
,
219
(
2013
).
9.
H.T.
Rathod
,
K.V.
Nagaraja
,
B.
Venkatesudu
, and
N.L.
Ramesh
,
J.Indian Inst.Sci.
183
188
,
84
(
2004
).
10.
Tattwa Darshi
Panda
and
K.V.
Nagaraja
,
Global Journal of Pure and Applied Mathematics
1241
1251
,
11
(
2015
).
This content is only available via PDF.
You do not currently have access to this content.