Piecewise exponential models provide a very flexible framework for modelling univariate survival data. It can be used to estimate the effects of different covariates which are influenced by the survival data. Although in a strict sense it is a parametric model, a piecewise exponential hazard can approximate any shape of a parametric baseline hazard. In the parametric baseline hazard, the hazard function for each individual may depend on a set of risk factors or explanatory variables. However, it usually does not explain all such variables which are known or measurable, and these variables become interesting to be considered. This unknown and unobservable risk factor of the hazard function is often termed as the individual’s heterogeneity or frailty. This paper analyses the effects of unobserved population heterogeneity in patients’ survival times. The issue of model choice through variable selection is also considered. A sensitivity analysis is conducted to assess the influence of the prior for each parameter. We used the Markov Chain Monte Carlo method in computing the Bayesian estimator on kidney infection data. The results obtained show that the sex and frailty are substantially associated with survival in this study and the models are relatively quite sensitive to the choice of two different priors.

1.
E.
Arjas
, and
D.
Gasbara
,
Nonparametric Bayesian inference for right-censored survival data, using the Gibbs sampler
.
Statistica Sinica
4
,
505
524
(
1994
).
2.
A. M.
Ayman
, and
B. G.
Anis
,
Using WINBUGS to Cox Model with Changing from the Baseline Hazard Function
.
Journal of Applied Mathematical Sciences
5
,
2217
2240
(
2011
).
3.
J.
Berger
,
Statistical Decision Theory and Bayesian Analysis
,
Springer-Verlag
, 2nd edition,
New York
,
1985
, pp.
118
166
.
4.
J.
Besag.
,
E.
Green.
,
D.
Higdon
and
K.
Mengersen
,
Bayesian computation and stochastic systems
.
Statistical Science
10
(
1
),
3
41
(
1995
).
5.
N.
Breslow
.,
Covariance analysis on censored survival data
.
Biometrics
30
,
89
99
(
1974
).
6.
Y. Q.
Chen.
and
N. P.
Jewel
,
On a General Class of Semiparametric Hazards Regression Models
.
Biometrika
88
,
687
702
(
2001
).
7.
P.
Congdon
,
Applied Bayesian Modeling
,
John Wiley and Sons
,
New York
,
2003
, pp.
212
213
.
8.
D. R.
Cox
, and
D.
Oakes
Analysis of Survival Data
,
Chapman and Hall
,
United Kingdom
,
1972
, pp.
212
213
.
9.
J.
Diebolt.
and
C. P.
Robert
,
Estimation of finite mixture distributions through Bayesian sampling
.
Journal of the Royal Statistical Society: Series B
56
,
363
375
(
1994
).
10.
L.
Duchateau
, and
P.
Janssen
,
The Frailty Model
,
Springer
,
New York
,
2008
, pp.
212
213
.
11.
A.
Gelman.
,
J. B.
Charlin.
,
H. S.
Stern
and
D. B.
Rubin
,
Bayesian Data Analysis
,
Chapman and Hall
,
United Kingdom
,
2004
, pp.
212
213
.
12.
W. R.
Gilks.
,
S.
Richardson.
, and
D. J.
Spiegelhalter
,
Markov Chain Monte Carlo in Practice
,
Chapman and Hall
,
United Kingdom
,
1996
, pp.
212
213
.
13.
T.
Holford
,
The analysis of rates and of survivorship using log-linear models
.
Biometrics
36
,
299
305
(
1980
).
14.
P.
Hougaard
,
Frailty models for survival data
.
Lifetime Data Analysis
1
(
3
),
255
273
(
1995
).
15.
J. G.
Ibrahim.
,
M. H.
Chen.
, and
D.
Sinha
,
Bayesian Survival Analysis
,
Springer
,
New York
,
2001
, pp.
212
213
.
16.
N. M.
Ismail.
,
Z. M.
Khalid.
, and
N.
Achmad
,
Multiplicative Piecewise Gamma in Survival Data Analysis
.
Jurnal Teknologi
70
(
1
),
125
129
(
2014
).
17.
J. D.
Kalbfleisch.
, and
R. L.
Prentice
.
Marginal likelihood based on cox’s regression and life model
.
Biometrika
60
,
267
278
(
2002
).
18.
D. G.
Kleinbaum.
, and
M.
Clein
.
M. Survival analysis: A Self-learning Text
,
Springer
,
New York
,
2005
, pp.
212
213
.
19.
N.
Laird.
, and
D.
Oliver
.
Covariance analysis of censored survival data using log-linear analysis techniques
.
Journal of the American Statistical Association
76
,
231
240
(
1981
).
20.
J. M.
Marin.
,
M. R.
Bernal.
, and
M. P.
Wiper
.
Using Weibull mixture distributions to model hererogeneous survival
.
Communication in Statistics Simulation and Computation
,
34
(
3
):
673
684
, (
2005
).
21.
C. A.
McGilchrist.
, and
C. W.
Aisbett
.
Regression with Frailty in Survival Analysis
.
Biometrics
,
47
:
461
466
, (
1991
).
22.
S. K.
Sahu.
,
D. K.
Dey.
,
H.
Aslanidou.
, and
D.
Sinha
.
A Weibull Regression Model with Gamma frailties for Multivariate survival Data
.
Lifetime Data Analysis
,
3
:
123
137
, (
1997
).
23.
D.
Sinha.
, and
D. K.
Dey
.
Semiparametric Bayesian analysis of survival data
.
Journal of the American Statistical Association
,
92
:
1195
1212
, (
1997
).
24.
D.
Spiegelhalter.
,
N.
Best.
,
B.
Carlin.
, and
A.
vanderLinde
.
Bayesian measures of model complexity and fit
.
Journal of the Royal Statistical Society:Series B
,
64
(
4
):
583
639
, (
2002
).
25.
Y.
Zhang.
,
M. H.
Chen.
,
J. G.
Ibrahim.
,
D.
Zeng.
,
Q.
Chen.
,
Z.
Pan.
, and
X.
Xue
.
Bayesian Gamma Frailty Models for Survival Data with Semi-Competing Risks and Treatment Switching
.
Lifetime Data Analysis
,
20
(
1
):
1
36
, (
2014
).
This content is only available via PDF.
You do not currently have access to this content.