This paper studies a discrete event simulation (DES) as a computer based modelling that imitates a real system of pharmacy unit. M/M/c queuing theo is used to model and analyse the characteristic of queuing system at the pharmacy unit of Hospital Tuanku Fauziah, Kangar in Perlis, Malaysia. The input of this model is based on statistical data collected for 20 working days in June 2014. Currently, patient waiting time of pharmacy unit is more than 15 minutes. The actual operation of the pharmacy unit is a mixed queuing server with M/M/2 queuing model where the pharmacist is referred as the server parameters. DES approach and ProModel simulation software is used to simulate the queuing model and to propose the improvement for queuing system at this pharmacy system. Waiting time for each server is analysed and found out that Counter 3 and 4 has the highest waiting time which is 16.98 and 16.73 minutes. Three scenarios; M/M/3, M/M/4 and M/M/5 are simulated and waiting time for actual queuing model and experimental queuing model are compared. The simulation results show that by adding the server (pharmacist), it will reduce patient waiting time to a reasonable improvement. Almost 50% average patient waiting time is reduced when one pharmacist is added to the counter. However, it is not necessary to fully utilize all counters because eventhough M/M/4 and M/M/5 produced more reduction in patient waiting time, but it is ineffective since Counter 5 is rarely used.

1.
M. B.
Allyson
,
A. D.
Cinnamon
,
W. D.
Kelton
,
C. J.
Lindsell
and
M. J.
Ward
,
American Journal of Emergency Medicine
32
,
917
922
(
2014
).
2.
A.
Amar
,
Electronic Notes in Theoretical Computer Science
253
,
33
44
(
2009
).
3.
M.
Avi
 et. al,
Kluwer Academic Publishers
,
2
4
, 149–171 (
2002
).
4.
K.
Bo
,
E.
Yisraela
,
B.
Shiner
,
R.
Konrad
,
A. S.
Pomerantz
and
B. V.
Watts
,
General Hospital Psychiatry
35
,
668
670
(
2013
).
5.
H. W.
Chia
and
C. K.
Jau
,
Journal of Computational and Applied Mathematics
235
,
547
562
(
2010
).
6.
C. C.
Fernando
,
B. F.
Rodrigo
,
B. F.
Renan
and
M. A.
Wagner
,
Computer Methods and Programs in Biomedicine
87
,
201
207
(
2007
).
7.
Greg
W.
,
Antione
S.
,
French
,
J.
and
S.
Shechter
,
Radiotherapy and Oncology
92
,
76
82
(
2009
).
8.
N.
Grit
and
R.
Porntip
,
Procedia - Social and Behavioral Sciences
101
,
147
158
(
2013
).
9.
B.
Jahn
,
T.
Engelbert
,
S.
Uwe
and
K-P.
Pfeiffer
,
International Society Pharmacoeconomic Outcomes Research (Ispor)
13
(
4
),
501
506
(
2010
).
10.
C. K.
Jau
,
H. W.
Chia
and
L. P.
Wen
,
Applied Mathematical Modelling
35
,
2196
2208
(
2010
).
11.
L. M.
Christopher
,
K.
Ibrahim
and
T.
Zahir
,
Computer Method and Programs in Biomedicine
113
,
1
14
(
2014
).
12.
M.
David
,
C.
Hui
and
J.
Jun
,
Frontiers of Architectural Research
,
2095
2635
(
2014
).
13.
M.
Maryam
and
S.
Mehdi
,
International Journal of Engineering & Technology IJET-IJENS
12
(
6
), (
2012
).
14.
A. A.
Mohamed
and
M. A.
Talal
,
European Journal of Operational Research
198
,
936
942
(
2009
).
15.
H.
Ndukwe
,
S.
Omale
and
O.
Opanuga
,
African Journal of Pharmacy and Pharmacology
5
(
8
),
1020
1026
(
2011
).
16.
C.
Peter
,
T.
Vincent
,
P.
Liliane
and
A. v.
Horenbeek
,
Simulation Modelling Practice and Theory
48
,
45
57
(
2014
).
17.
B.
Smaranda
and
G.
Florin
,
Journal of Biomedical Informatics
53
,
261
269
(
2015
).
18.
R.
Srinivasan
,
D.
Arjun
and
V. K.
Sagar
,
Procedia Economics and Finance
11
,
838
856
(
2014
).
This content is only available via PDF.
You do not currently have access to this content.